
Name:

CS 578 Programming Language Semantics – Mid-term Exam May 3, 2022

This exam has 4 questions; most have several sub-parts. The worth of each question and sub-part
is indicated in square brackets. There are 75 points in total, and you have 75 minutes for the exam.
Please write your answers on the exam paper in the spaces provided. The exam is closed book.

All the questions concern the simply typed λ-calculus extended with Booleans and Pairs, which
will be denoted λ→,B,×. For your reference, syntax and semantic rules for λ→,B,× are provided at
the end of the exam.

1

1. [15 pts.]

Consider the λ→,B,× term

t = (λy:(Bool → Bool)× Bool.(y.1)(y.2)) {λx:Bool.x,false}

When answering the following questions, you may abbreviate Bool by B and false by F to save
writing time.

(a) [5 pts.] Show the sequence of one-step evaluation transitions (in the small-step semantics) that
lead from t to the normal form false. It is not necessary to give the full derivation for each
transition. (Hint: Four steps are needed.)

2

(b) [10 pts.] Draw a derivation tree using the typing rules to show that ⊢ t : Bool. (Hint: Your
tree should have 11 nodes.)

3

2. [20 pts.]

Consider the following meta-properties that may apply to a language with a small-step semantics.

• Determinacy (of one-step evaluation): If t → t′ and t → t′′ then t′ = t′′.

• Uniqueness (of normal forms): If t →∗ u and t →∗ u′, where u and u′ are both normal
forms, then u = u′.

• Termination (of evaluation): For every term t there is some normal form t′ such that
t →∗ t′.

• Progress: If ⊢ t : T then either t is a value or else ∃t′ such that t → t′.

• Preservation: If ⊢ t : T and t → t′ then ⊢ t′ : T.

For each of the following languages, state which, if any, of the properties are false, and, for each
such property, give a brief counter-example demonstrating that the property does not hold.

(a) [5 pts.] Language λ→,B,×.

(b) [5 pts.] Language λ→,B,× with the addition of a small-step rule

{v1,v2}.1 → v2 (E-FUNNY1)

4

(c) [5 pts.] Language λ→,B,× with the addition of a small-step rule

t2 → t′
2

{t1,t2} → {t1,t′
2}

(E-FUNNY2)

(d) [5 pts.] Language λ→,B,× with the addition of the typing rule

Γ ⊢ t1 : Bool Γ ⊢ t2 : Bool

Γ ⊢ {t1,t2} : Bool
(T-FUNNY3)

5

3. [25 pts.]

The following Preservation theorem holds for the small-step semantics of λ→,B,×:

Theorem. If ⊢ t : T and t → t′, then ⊢ t′ : T.

An incomplete proof of this theorem is given below. Complete the proof by filling in the three
missing cases (marked by a ?). You may assume the following lemmas without proof:

• Substitution Lemma: If Γ,x : S ⊢ t : T and Γ ⊢ s : S, then Γ ⊢ [x 7→ s]t : T.

• Inversion Lemma of the usual form.

Proof. By induction on the typing derivation ⊢ t : T. We proceed by case analysis on the final
rule in the derivation.

• Case T-VAR: ?

• Case T-ABS: No one-step rule applies, so this case cannot occur.

• Case T-APP: ?

• Case T-TRUE: No one-step rule applies, so this case cannot occur.

• Case T-FALSE: Similar to T-TRUE.

6

• Case T-IF: t = if t1 then t2 else t3

⊢ t1 : Bool
⊢ t2 : T
⊢ t3 : T

There are three cases, based on the possible one-step rules.

– E-IFTRUE: Here t1 = true and t′ = t2, so result is immediate.

– E-IFFALSE: Similar.

– E-IF: Here t1 → t′
1 and t′ = if t′

1 then t2 else t3. By induction,
⊢ t′

1 : Bool. By T-IF, ⊢ t′ : T.

• Case T-PAIR: t = {t1,t2}
⊢ t1 : T1

⊢ t2 : T2

T = T1 × T2

There are two cases, based on the possible one-step rules

– E-PAIR1: Here t1 → t′
1 and t′ = {t′

1,t2}. By induction, ⊢ t′
1 : T1. By T-PAIR,

⊢ {t′
1,t2} : T1 × T2.

– E-PAIR2: Similar.

• Case T-PROJ1: ?

• Case T-PROJ2: Similar to T-PROJ1.

7

4. [15 pts.]

This question asks about other semantic presentations of λ→,B,×.

(a) [5 pts.] Here is a partial set of big-step evaluation rules for λ→,B,×. Add the three missing
rules.

v ⇓ v (B-VALUE)

t1 ⇓ (λx:T11.t12) t2 ⇓ v2 [x 7→ v2]t12 ⇓ v

t1 t2 ⇓ v
(B-APP)

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

(B-IFTRUE)

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

(B-IFFALSE)

8

(b) [5 pts.] Now consider a contextual semantics for λ→,B,×. As usual, the top-level evaluation
relation is given by a single rule

t →cmp t′

C[t] →ctx C[t′]
(E-STEP)

The computation rules →cmp are just a subset of the small-step evaluation rules. Which ones?
(Just list their names.)

(c) [5 pts.] Still considering the contextual semantics for λ→,B,×, complete this definition for the
grammar of contexts:

C ::= [] | Ct | . . .

9

.

10

Syntax and Rules for Simply Typed λ-calculus with Booleans and Pairs (λ→,B,×)

Syntactic forms:

t ::= terms:
x variable
λx:T.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional
{t,t} pair
t.1 first projection
t.2 second projection

v ::= values:
λx:T.t abstraction value
true true value
false false value
{v,v} pair value

T ::= types:
T → T type of functions
Bool type of booleans
T1 × T2 type of pairs

Γ ::= contexts:
∅ empty context
Γ,x : T term variable binding

11

Typing rules:

x : T ∈ Γ

Γ ⊢ x : T
(T-VAR)

Γ,x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1 → T2

(T-ABS)

Γ ⊢ t1 : T11 → T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-APP)

Γ ⊢ true : Bool (T-TRUE)

Γ ⊢ false : Bool (T-FALSE)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-IF)

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ {t1,t2} : T1 × T2

(T-PAIR)

Γ ⊢ t1 : T11 × T12

Γ ⊢ t1.1 : T11

(T-PROJ1)

Γ ⊢ t1 : T11 × T12

Γ ⊢ t1.2 : T12

(T-PROJ2)

12

Small-step evaluation rules:

t1 → t′
1

t1t2 → t′
1t2

(E-APP1)

t2 → t′
2

v1t2 → v1t′
2

(E-APP2)

(λx:T11.t12) v2 → [x 7→ v2]t12 (E-APPABS)

if true then t2 else t3 → t2 (E-IFTRUE)

if false then t2 else t3 → t3 (E-IFFALSE)

t1 → t′
1

if t1 then t2 else t3 → if t′
1 then t2 else t3

(E-IF)

{v1,v2}.1 → v1 (E-PAIRBETA1)

{v1,v2}.2 → v2 (E-PAIRBETA2)

t1 → t′
1

t1.1 → t′
1.1

(E-PROJ1)

t1 → t′
1

t1.2 → t′
1.2

(E-PROJ2)

t1 → t′
1

{t1,t2} → {t′
1,t2}

(E-PAIR1)

t2 → t′
2

{v1,t2} → {v1,t′
2}

(E-PAIR2)

13

