
Name:

CS 578 Programming Language Semantics – Mid-term Exam May 2, 2024

This exam has 4 questions; most have several sub-parts. The worth of each question and sub-part
is indicated in square brackets. There are 75 points in total, and you have 75 minutes for the exam.
Please write your answers on the exam paper in the spaces provided. The exam is closed book.

All the questions concern the simply typed λ-calculus extended with Naturals and Pairs, which
will be denoted λ→,N,×. For your reference, syntax and semantic rules for λ→,N,× are provided at
the end of the exam.

1

1. [20 pts.] Derivations

Consider the λ→,N,× term

t = (λf:Nat → (Nat× Nat).pred ((f 0).1)) (λx:Nat.{succ x,0})

When answering the following questions, you may abbreviate Nat by N, succ by S , and pred
by P to save writing time.

(a) [5 pts.] Show the sequence of one-step evaluation transitions (in the small-step or contextual
semantics) that lead from t to the normal form 0. It is not necessary to give the full derivation for
each transition. (Hint: 4 steps are needed.)

Answer:

(λf:N → (N× N).P ((f 0).1)) (λx:N.{S x,0})
→ P (((λx:N.{S x,0})0).1)
→ P ({S 0,0}.1)
→ P (S 0)
→ 0

(b) [5 pts.] Draw a complete derivation tree using the big-step rules to show that t ⇓ 0. To save
writing, you can drop the type annotations on lambda-bound variables. Your tree should have as
few nodes as possible. (Hint: 9 nodes are sufficient.)

Answer:

λf.P((f 0).1) ⇓ λf.P((f 0).1)
B-VALUE

λx.{Sx,0} ⇓ λx.{Sx,0}
B-VALUE

λx.{Sx,0} ⇓ λx.{Sx,0}
B-VALUE

0 ⇓ 0
B-VALUE

{S0,0} ⇓ {S0,0}
B-VALUE

(λx.{Sx,0}) 0 ⇓ {S0,0}
B-APP

((λx.{Sx,0}) 0).1 ⇓ S0
B-PROJ1

P(((λx.{Sx,0}) 0).1) ⇓ 0
B-PREDSUCC

(λf.P((f 0).1)) (λx.{Sx,0}) ⇓ 0
B-APP

2

(c) [10 pts.] Draw a derivation tree using the typing rules to show that ∅ ⊢ t : Nat. Use of
auxiliary definitions for contexts Γ that arise along the way is recommended! (Hint: Your tree
should have 12 nodes.)

Answer:

f : N → (N× N) ∈ Γf

Γf ⊢ f : N → (N× N)
T-VAR

Γf ⊢ 0 : N
T-ZERO

Γf ⊢ f 0 : N× N
T-APP

Γf ⊢ (f 0).1 : N
T-PROJ1

Γf ⊢ P ((f 0).1) : N
T-PRED

∅ ⊢ λf:N → (N× N).P ((f 0).1) : (N → (N× N)) → N
T-ABS

x : N ∈ Γx

Γx ⊢ x : N
T-VAR

Γx ⊢ S x : N
T-SUCC

Γx ⊢ 0 : N
T-ZERO

Γx ⊢ {S x,0} : N× N
T-PAIR

∅ ⊢ λx:N.{S x,0} : N → (N× N)
T-ABS

∅ ⊢ (λf:N → (N× N).P ((f 0).1)) (λx:N.{S x,0}) : N T-APP

where Γf = ∅,f : N → (N× N) and Γx = ∅,x : N.

3

2. [20 pts.] Properties

The following meta-properties hold for language λ→,N,× under small-step or contextual semantics.

• Determinacy (of one-step evaluation): If t → t′ and t → t′′ then t′ = t′′.

• Uniqueness (of normal forms): If t →∗ u and t →∗ u′, where u and u′ are both normal
forms, then u = u′.

• Progress: If ⊢ t : T then either t is a value or else ∃t′ such that t → t′.

• Preservation: If ⊢ t : T and t → t′ then ⊢ t′ : T.

For each of the following alternative languages, state which, if any, of the properties are false, and,
for each such property, give a brief counter-example demonstrating that the property does not hold.

(a) [5 pts.] Language λ→,N,× with the addition of a small-step rule

{v1,v2}.1 → v2 (E-FUNNY1)

Answer:

• Determinacy fails: e.g. {λx:Nat.x,0}.1 steps to either λx:Nat.x or 0.

• Uniqueness fails with the same counterexample.

• Preservation fails: the same example has type Nat → Nat but can step to term 0 of type
Nat.

• Progress still holds. (Adding an additional stepping rule can never make progress fail!)

(b) [5 pts.] Language λ→,N,× with the removal of small-step rule E-PROJ1.

Answer:

• Progress fails: for example {pred succ 0,0}.1 has type Nat, but is not a value and
does not step.

• Other properties still hold.

4

(c) [5 pts.] Language λ→,N,× under contextual semantics with a change of the context grammar to:

C ::= [] | C t | v C | pred C| succ C| C.1 | C.2 | {C,t} | {t,C}

Answer:

• Determinacy fails: {pred 0,pred 0} now reduces to either {0,pred 0} or to
{pred 0,0}.

• However, Uniqueness still holds, since ultimately the same reductions are made on the way
to a normal form, regardless of order.

• Progress and Preservation also still hold.

(d) [5 pts.] Language λ→,N,× with the addition of the typing rule

Γ ⊢ pred 0 : Nat → Nat (T-FUNNY2)

Answer:

• Preservation fails: pred 0 has type Nat → Nat but reduces to 0, which does not have
type Nat → Nat.

• Progress does not fail: although we can construct an example like (pred 0) 0 which vi-
olates type safety (since it is well-typed but can never reduce to a value), it can still take a
single step (to 0 0).

• Since the stepping rules do not change, Determinacy (and hence Uniqueness) still hold.

5

3. [20 pts.] Progress

The following Progress theorem holds for the small-step semantics of λ→,N,×:

Theorem. If ⊢ t : T then either t → t′ for some t′, or t is a value.

An incomplete proof of this theorem is given below. Complete the proof by filling in the four
missing cases (marked by a ?). You may assume the following lemma without proof:

• Canonical Forms Lemma:

1. If v is a value of type Nat, then v is a numeric value nv.

2. If v is a value of type T1 → T2, then v = λx:T1.t2.

3. If v is a value of type T1 × T2, then v = {v1,v2}.

Proof. By induction on the structure of the typing derivation ⊢ t : T. We proceed by case analysis
on the root (“final”) rule in the derivation.

• Case T-VAR: ?

Answer:
Impossible, since t is typable in the empty context.

• Case T-ABS: ?

Answer:
t = λx:T.t1 is already a value.

• Case T-APP: t = t1 t2

By inversion on the derivation, we have

⊢ t1 : T11 → T
⊢ t2 : T11

By induction on the sub-derivations, we have that each of t1 and t2 can either take a step or
is a value. There are three cases:

– If t1 can take a step, then t can take a step by E-APP1.

– If t1 is a value but t2 can take a step, then t can take a step by E-APP2.

– If both t1 and t2 are values, then since by Canonical Forms t1 = λx:T11.t11, we
know t can take a step by E-APPABS.

• Case T-ZERO: t = 0 is already a value.

• Case T-SUCC: t = succ t1

By inversion on the derivation, we have

⊢ t1 : Nat

By induction on the sub-derivation, t1 can either take a step or is a value.

6

– In the former case, t can take a step by E-SUCC.

– In the latter case, Canonical Forms says that t1 is a numeric value nv1. So t =
succ t1 is already also a (numeric) value.

• Case T-PRED: Similar to T-SUCC.

• Case T-PAIR: ?

Answer:

t = {t1,t2}
By inversion on the derivation, we have

⊢ t1 : T1

⊢ t2 : T2

By induction on the two sub-derivations, we have that each of t1 and t2 can take a step or
is a value. There are three cases:

– If t1 can take a step, t can take a step by E-PAIR1.

– If t1 is a value but t2 can take a step, t can take a step by E-PAIR2.

– If both t1 and t2 are values, then t is itself already a value.

• Case T-PROJ1: ?

Answer:

t = t1.1

By inversion on the derivation, we have

⊢ t1 : T× T2

By induction on the sub-derivation, either t1 can take a step or it is a value.

– In the former case, t an take a step by E-PROJ1.

– In the latter case, Canonical Forms tells us that t1 has the form {v1,v2}, so t can take
a step by E-PAIRBETA1.

• Case T-PROJ2: Similar to T-PROJ1.

7

4. [15 pts.] True or False

Say whether each of the following assertions about λ→,N,× is true or false. If true, give a brief
informal justification. If false, give a concrete counterexample.

(a) [5 pts.] If term t is not well-typed, then t is stuck under small-step semantics.

Answer:
False. For example,the term (λx:Nat.0) {0,0} is ill-typed, but it steps to 0.

(b) [5 pts.] If t →∗ t′ then size(t′) ≤ size(t), where as usual size is the number of nodes in the
abstract syntax tree representation of the term.

Answer:
False. If we apply a lambda whose argument is used more than once in its body, the term’s size
can grow. For example,

(λx:Nat.{x,x}) (succ succ succ succ 0)

has size 10, but steps to

{succ succ succ succ 0,succ succ succ succ 0},

which has size 11.

(c) [5 pts.] If t is a closed term (i.e., it has no free variables) and t →∗ t′, then t′ is a closed term.

Answer:
True. Informally, the only rule that removes a variable binding (hence possibly changing a variable
from bound to free) is E-APPABS, but this rule replaces every use of that variable with the (closed)
argument value. (We can prove this formally using an inductive argument very similar to that for
Preservation.)

8

Syntax and Rules for Simply Typed λ-calculus with Naturals and Pairs (λ→,N,×)

Syntactic forms:

t ::= terms:
x variable
λx:T.t abstraction
t t application
0 constant zero
succ t successor
pred t predecessor
{t,t} pair
t.1 first projection
t.2 second projection

v ::= values:
λx:T.t abstraction value
nv numeric value
{v,v} pair value

nv ::= numeric values:
0 zero value
succ nv successor value

T ::= types:
T → T type of functions
Nat type of naturals
T1 × T2 type of pairs

Γ ::= contexts:
∅ empty context
Γ,x : T term variable binding

9

Typing rules:

x : T ∈ Γ

Γ ⊢ x : T
(T-VAR)

Γ,x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1 → T2

(T-ABS)

Γ ⊢ t1 : T11 → T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-APP)

Γ ⊢ 0 : Nat (T-ZERO)

Γ ⊢ t1 : Nat

Γ ⊢ succ t1 : Nat
(T-SUCC)

Γ ⊢ t1 : Nat

Γ ⊢ pred t1 : Nat
(T-PRED)

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ {t1,t2} : T1 × T2

(T-PAIR)

Γ ⊢ t1 : T11 × T12

Γ ⊢ t1.1 : T11

(T-PROJ1)

Γ ⊢ t1 : T11 × T12

Γ ⊢ t1.2 : T12

(T-PROJ2)

10

Small-step evaluation rules:

t1 → t′
1

t1 t2 → t′
1 t2

(E-APP1)

t2 → t′
2

v1 t2 → v1 t′
2

(E-APP2)

(λx:T11.t12) v2 → [x 7→ v2]t12 (E-APPABS)

t1 → t′
1

succ t1 → succ t′
1

(E-SUCC)

pred 0 → 0 (E-PREDZERO)

pred succ nv1 → nv1 (E-PREDSUCC)

t1 → t′
1

pred t1 → pred t′
1

(E-PRED)

{v1,v2}.1 → v1 (E-PAIRBETA1)

{v1,v2}.2 → v2 (E-PAIRBETA2)

t1 → t′
1

t1.1 → t′
1.1

(E-PROJ1)

t1 → t′
1

t1.2 → t′
1.2

(E-PROJ2)

t1 → t′
1

{t1,t2} → {t′
1,t2}

(E-PAIR1)

t2 → t′
2

{v1,t2} → {v1,t′
2}

(E-PAIR2)

11

Contextual Semantic Rules:

t →cmp t′

C[t] → C[t′]
(E-STEP)

C ::= [] | C t | v C | pred C| succ C| C.1 | C.2 | {C,t} | {v,C}

(λx:T11.t12) v2 →cmp [x 7→ v2]t12 (E-APPABS)

pred 0 →cmp 0 (E-PREDZERO)

pred succ nv1 →cmp nv1 (E-PREDSUCC)

{v1,v2}.1 →cmp v1 (E-PAIRBETA1)

{v1,v2}.2 →cmp v2 (E-PAIRBETA2)

Big-step Semantic Rules:

v ⇓ v (B-VALUE)

t1 ⇓ (λx:T11.t12) t2 ⇓ v2 [x 7→ v2]t12 ⇓ v

t1 t2 ⇓ v
(B-APP)

t1 ⇓ nv1

succ t1 ⇓ succ nv1

(B-SUCC)

t1 ⇓ 0

pred t1 ⇓ 0
(B-PREDZERO)

t1 ⇓ succ nv1

pred t1 ⇓ nv1

(B-PREDSUCC)

t1 ⇓ v1 t2 ⇓ v2

{t1,t2} ⇓ {v1,v2}
(B-PAIR)

t ⇓ {v1,v2}
t.1 ⇓ v1

(B-PROJ1)

t ⇓ {v1,v2}
t.2 ⇓ v2

(B-PROJ2)

12

