
CS578
Programming Language Semantics

Spring’24 Lecture Notes
Lambda Calculus

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 1

Introduction to λ-calculus

• A notation for describing computations that focuses on function definition
and application and on binding of variables (function parameters).

• Functions as rules (an “intensional” view; note spelling) rather than as a set
of ordered pairs (an “extensional” view). A bit coy about types.

• Functions as (anonymous) expressions rather than as a separate class of
declared things.

• Allows convenient definition and manipulation of functions as “first-class”
values.

Informal example: a function that adds 1 to its argument:

(λx.(x + 1))

• Invented by Church in the 1930’s to study computability questions. Can
prove that a function is expressible in the λ-calculus iff it is computable by a
Turing machine (or expressible as a general recursive function).

• In itself, serves as a basic functional language.

Practical FLs = pure λ-calculus + data types + “syntactic sugar.”

• (Meta-notation for denotational semantics.)

• As usual, we will take an operational (syntactic) approach to λ-calculus
semantics. (Finding mathematical models for the calculus is interesting, but
we won’t study that.)

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 2

Syntax

λ-calculus is an expression calculus, with the following concrete syntax:

<exp> := <variable> Variable names
| (<exp> <exp>) Function applications
| (λ<variable>.<exp>) Function abstractions
| <constant> Built-in constants

A <variable> is ordinarily denoted by a lower-case letter, e.g., x,y,z,f.

I will typically use upper-case letters (e.g., M,N,P,Q) as metavariables
ranging over expressions (e.g., (λx.M)).

Pure λ-calculus has no constants. It is common to extend the λ-calculus with
some set of “built-in” constants and functions (an applied λ-calculus):

We will mostly stick to the pure calculus this week, but sometimes use integer
constants and operators in examples, e.g.

0,1,2,... Integer constants
+-*/= Integer operators
true,false Boolean constants
if If-then-else operator

(λy.y)
(λx.(λy.x))
(f a)
((λy.z) 42)
(+ 3 2)
(λx.(+ x 1))
(λx.if (= x 0) 1 2)
((λx.(+ x 1)) 17)

Note: Pierce takes a slightly different approach to applied λ-calculus, which
allows built-in operators with parameters, similar to the arith/bool languages
of Ch. 3.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 3

We often cheat and use several abbreviations in our concrete syntax:

• Function application associates to the left.
• The body of a λ-abstraction extends as far to the right as possible.
• Drop parentheses where not needed.
• A sequence of consecutive abstractions can be written with a single λ.

Example:

S ≡ λxyz.(x z)(y z)

could have been written with fewer parentheses as

λxyz.x z(y z)

Its full form is

(λx.(λy.(λz.((x z)(y z)))))

(This is called the “S combinator.”)

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 4

Tree representation

For expression of any size, it is best to write down the abstract syntax tree of
the expression to avoid confusion. (This will prove more deeply useful later
on.)

Examples:

(λx.(+ x 1)) 17

@
�

��

λx

@
�
�

@
��+

@@x

@
@

1

@
@@

17

(λx.(λy.(λz.((x z)(y z)))))

λx

λy

λz

@
�

��

@
�
�

x
@
@ z

@
@@

@
�
�

y
@
@ z

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 5

More on Functions

λ-abstractions are fundamentally the same thing as fun expressions in Caml
or \-expressions in Haskell; e.g., λx.+ x 1 corresponds to

(Caml) fun x -> x + 1
(Haskell) \ x -> x + 1

Thus we can view λ-calculus expressions as a subset of ML or Haskell
expressions. (Of course, we haven’t said anything yet about how λ

expressions are supposed to behave computationally.)

Notice that all λ-calculus functions are written in prefix notation and take
exactly one argument. What do we do about functions that naturally require
more than one, such as addition?

Recall that when we wrote (+ 3 4) this was really an abbreviation for ((+
3) 4). That is, + is a function that takes a single integer argument x and
returns a new function whose effect is to add x to its argument!

This trick is called currying after the logician Haskell Curry, who made
extensive use of it. Multi-argument functions in Haskell are normally written
in curried style.

Alternatively, if we have built-in pairs in our langauge, we could define the
built-in + function to take a single pair of integers as argument. (But the
built-in pair constructor must still somehow take two arguments.)

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 6

Reductions

We evaluate a λ-calculus expression by repeatedly selecting a reducible
(sub-)expression (redex) and reducing it, according to a reduction rule,
producing a reduct.

Pure λ-calculus has the β-rule, which describes how to apply a λ-abstraction
to an argument.

Informally: the result of applying a λ-abstraction to an argument is an
instance of the body of the abstraction in which (free) occurrences of the
formal parameter in the body are replaced with (copies of) the argument.

Each applied λ-calculus also has δ-rules describing how to reduce expressions
involving the built-in functions and constants.

Note that—unless otherwise specified—these rules can be applied anywhere
in a expression, not just at the root. From a formal point of view, this makes
the calculus non-deterministic.

Examples:

* 2 3 →δ 6

(λx.+ x 1) 4 →β + 4 1 →δ 5

(λx.+ x x) 5 →β + 5 5 →δ 10

(λx.+ 1 2) 5 →δ (λx.3) 5 →β 3

(λx.+ 1 2) 5 →β (+ 1 2) →δ 3

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 7

(λx.(λy.- y x)) 4 5 →β (λ y.- y 4) 5
→β - 5 4
→δ 1

@
�
��

@
�
�

λx
λy

@
��

@
��- @@y

@@x

@
@

4

@
@@

5

→β

@
�

��

λy

@
�
�

@
��-

@@y

@
@

4

@
@@

5

→β

@
�

��

@
�
�

-
@
@

5

@
@@

4
→δ 1

(λf.f 3)(λx.+ x 1) →β (λx.+ x 1) 3
→β + 3 1
→δ 4

@
�
��

λf

@
�
�

f
@
@

3

@
@@

λx

@
�
�

@
��+

@@x

@
@

1 →β

@
�

��

λx

@
�
�

@
��+

@@x

@
@

1

@
@@

3

→β

@
�

��

@
�
�

+
@
@

3

@
@@

1
→δ 4

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 8

Bound and Free Variables

In an abstraction λx.M, we say the λ binds the variable x in the body M,
meaning that x is just a placeholder for a value that will be filled in when the
abstraction is applied.

An occurrence of a variable in an expression is bound if there is an enclosing
λ abstraction that binds it; otherwise it is free.

Note that these definitions are relative to a particular occurrence and a
particular expression.

Example

λx.+ ((λy.+ y z) 7) x

λx

@
�

��

@
�
�

+
@
@
@

��

λy
@

��@
+ y

@@z

@@
7

@
@@

x

Here x and y occur bound in the overall expression, but z occurs free.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 9

Example

+ x ((λx.+ x 1) 4)

@
�

��

@
�
�

+
@
@x

@
@@

@
�
�

λx
@

��

@
��+ @@x

@@
1

@
@

4

Here the first occurrence of x is free but the second is bound.

If M is an expression we write:

FV (M) set of free variables in M
BV (M) set of bound variables in M

An expression M such that FV (M) = ∅ is said to be closed.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 10

β-reduction, more carefully

If the same name appears in several λ-bindings, we want to use idea of nested
scopes from block-structured languages.

I.e., when doing β-reduction, we should only substitute for free occurrences
of the formal parameter variable.

Example

(λx.(λx.- (- x 1)) 3 x) 9
→β (λ x.- (- x 1)) 3 9
→β - (- 3 1) 9
→∗δ -7

@
�
��

λx

@
�
�

@
��

λx
@

��- @@@
@- x

1

@@
3

@
@x

@
@@

9

→β

@
�

��

@
�
�

λx
@

��-
@@

@
��@

- x
@@1

@
@

3

@
@@

9

→β

@
�

��

@
�
�

-
@
@
@

��

@
��- @@3

@@
1

@
@@

9
→∗δ -7

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 11

The following is wrong!

(λx.(λx.- (- x 1)) 3 x) 9
̸→β (λx.- (- 9 1)) 3 9
→β - (- 9 1) 9
→∗δ -1

@
�
��

λx

@
�
�

@
��

λx
@

��- @@@
@- x

1

@@
3

@
@x

@
@@

9

̸→β

@
�

��

@
�
�

λx
@

��-
@@

@
��@

- 9

@@1

@
@

3

@
@@

9

→β

@
�

��

@
�
�

-
@
@
@

��

@
��- @@9

@@
1

@
@@

9
→∗δ -1

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 12

Variable Capture

Our revised definition of β-reduction still isn’t adequate; here’s another
name-clash problem.

@
�

��

λf

λx

@
�
�

f
@
@x

@
@@

x

Naive substitution leads to

λx

@
�

��

x
@
@@

x

but this is obviously wrong: the right-hand x, originally free in the expression,
has been “captured” by the λx.

We must conclude that a β-reduction of (λx.M)N is only valid if FV (N) do
not clash with any formal parameters in M.

We will see several ways to cope with this problem.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 13

α-Conversion and β-Conversion

We can avoid name-clash problems by uniformly changing the names of
bound variables where necessary.

Intuitively, changing names is justifiable because they are only formal
parameters.

Formally, we call such name changes α-conversion.

Example

(λx.x + 1) ↔α (λy.y + 1)

Of course, the new name must not appear free in the body of the abstraction.

(λx.x + y) ̸↔α (λy.y + y)

In general, we’d like to define two expressions as interconvertible if they
“mean the same thing” (intuitively).

To do this, we will define two other forms of conversion relation: β- and
η-conversion.

β-conversion is the symmetric closure of β-reduction (the inverse operation is
β-abstraction).

Example

+ 4 1 ↔β (λx.+ x 1) 4

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 14

Substitution

We can avoid all name-clash problems and give simple definitions of both α-
and β-conversion via a careful definition of capture-avoiding substitution.

We write [M/x]N for the substitution of M for x in N. (Other similar notations
are also in common use, e.g., [x 7→ M]N or N[M/x].)

[M/x] c = c
[M/x] x = M
[M/x] y = y (y ̸= x)
[M/x] (Y Z) = ([M/x] Y)([M/x] Z)
[M/x] λx.Y = λx.Y
[M/x] λy.Z = λy.[M/x]Z (y ̸= x and y ̸∈ FV (M))
[M/x] λy.Z = λw.[M/x]([w/y]Z) (w ̸∈ FV (Z)

∪FV (M))

Can drop the last rule if we adopt the Barendregt convention and assume
α-conversion occurs “where necessary.”

Can also drop the last rule if we know M has no free variables (more later).

Then we can define

λx.Z ↔α λy.[y/x]Z (y ̸∈ FV (Z))
(λx.M) N ↔β [N/x]M

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 15

de Bruijn Notation

Another way to solve name clash problems is to do away with names
altogether!

In the tree for a closed expression, every variable occurrence names a variable
bound at some λ-binding on the path between the occurrence node and the
root.

We can uniquely identify a variable by counting the number of λ-bindings that
intervene between its mention and its defining binding.

Example

λx.λy.+ x (* y y) λ.λ.+ 1 (* 0 0)

λx

λy

@
�
��

@
�
�

+
@
@x

@
@@

@
�
�

@
��

*
@@y

@
@y

λ

λ

@
�

��

@
�
�

+
@
@

1

@
@@

@
�
�

@
��

*
@@

0

@
@

0

It is now fairly straightforward to define β-reduction in terms of this
representation.

(Since there are no names, we don’t need α-conversion!)

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 16

η-Reduction and η-Conversion

Consider these two expressions:

λx.+ 1 x

(+ 1)

They “mean the same thing” in the sense that they behave the same way when
applied to any argument (i.e., they add 1 to it). This is the concept of
functional extensionality.

To formalize this, we add an η-reduction rule:

(λx.F x) →η F

provided x ̸∈ FV (F).

η-reduction tends to simplify an expression, but its inverse, η-expansion can
also be useful. Their combination is called η-conversion, written↔η .

The η-rules cannot be deduced from the β-rules.

We will sometimes appeal to the η-rules to prove equivalences between
expressions, but we won’t give evaluation rules corresponding to them.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 17

Reduction Order

To evaluate a λ-expression, we keep performing reductions as long as a redex
exists. An expression containing no redexes is said to be in normal form.

But an expression may contain more than one redex, so evaluation may
proceed by different routes.

E.g.: (λx.(λy.+ x y) 3) 2 can be reduced in two ways:

@
�
��

λx

@
�
�

λy

@
��

@
��+ @@x

@@y

@
@

3

@
@@

2

→β

@
�

��

λy

@
�
�

@
��+

@@
2

@
@y

@
@@

3

→β

@
�

��

@
�
�

+
@
@

2

@
@@

3
→δ 5

@
�
��

λx

@
�
�

λy

@
��

@
��+ @@x

@@y

@
@

3

@
@@

2

→β

@
�

��

λx

@
�
�

@
��+

@@x

@
@

3

@
@@

2

→β

@
�

��

@
�
�

+
@
@

2

@
@@

3
→δ 5

Fortunately, both reduction orders lead to the same result in this example. Will
this always happen?

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 18

Non-terminating reductions

Not every expression has a normal form at all.

Consider Ω ≡ (D D), where D ≡ λx.x x.

@
�

��

λx

@
�
�

x
@
@x

@
@@

λx

@
�
�

x
@
@x

The evaluation of this expression never terminates because

(D D)→β (D D)

In other words, evaluation enters an infinite loop. Such a computation is said
to diverge.

For some expressions, one reduction sequence may terminate while another
does not.

Example: (λ x.3)Ω

If we perform the application of (λ x.3) to Ω first, we immediately get 3
and stop. But if we keep trying to evaluate the argument Ω first, we keep
getting Ω again.

So choice of reduction order can affect whether we get any answer!

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 19

Confluence

It turns out that all reduction sequences that terminate will give the same
result, at least for the pure λ-calculus. Thus, if an expression has any normal
form, that normal form is unique.

This happy result is a consequence of the
Church-Rosser Theorem (Confluence): If E1 ↔∗ E2 then ∃ E, such that E1

→∗ E and E2 →∗ E.

Corollary Suppose now that E0 →∗ E1 and E0 →∗ E2 and that both E1 and
E2 are in normal form. Then, since E1↔∗ E2, C-R says ∃ E such that E1 →∗
E and E2 →∗ E. But since E1 and E2 are already both in normal form, this
can only mean that E1 = E = E2.

(If we are using names, the normal form is unique “up to α-conversion”.)

The Church-Rosser theorem for λ-calculus is surprisingly difficult to prove.

(And it isn’t necessarily true for the extensions of the λ-calculus that we will
examine, but this is not a big problem in practice, as we’ll see.)

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 20

Specifying Reduction Order

No reduction sequence can give us a wrong answer, but some sequences might
fail to terminate even when a normal form exists.

To define reduction orders, we need to characterize redex positions in an
expression.

An outermost redex of an expression is one that is not contained within any
other redex (i.e., within either the argument or the function body).

An innermost redex of an expression is one that contains no other redex.

The leftmost outermost redex is the outermost redex whose λ (for a β-redex)
or function constant (for a δ-redex) is furthest to the left (in the string or tree
representation). Leftmost innermost is defined similarly.

Two important reduction strategies are:

• applicative order, which says to always reduce the leftmost innermost
redex first;

• normal order, which says to always reduce the leftmost outermost redex
first.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 21

Normalization Theorem

The normal order reduction strategy always leads to a normal form, if one
exists.

Applicative order, which corresponds to the idea of evaluating a function’s
arguments before invoking the function, does not have this property.

Example revisited: (λx.3)(D D)

@
�

��

λx

3

@
@@

@
�
�

λy

@
��y

@@y

@
@
λz
@

��z
@@z

Here the λx redex is the (only) outermost one and the λy redex is the (only)
innermost one. Normal-order reduction says to do the λx reduction first, so
(D D) is never evaluated. Applicative order reduction says to evaluate (D
D) repeatedly.

Intuitively, normal order evaluation wins over applicative order here because
the function λx.3 doesn’t use its argument, so there’s no point in trying to
evaluate it (fruitlessly).

A function that uses its argument is said to be strict in that argument; e.g.,
λx.3 is not strict in x, but λx.x is.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 22

Weak Head Normal Form

In real programming languages, we don’t expect the body of a function to be
evaluated (even in part) before the function has been called, i.e., before the
formal parameters have been instantiated. (If it happens, we tend to think of it
as an optimization, like hoisting an invariant computation out of a loop.)

But either of our strategies, as defined so far, may do such reductions. An
applicative order example:

(λx.+ (+ 2 3) x) 8

The leftmost innermost redex is (+ 2 3), so this will be δ-reduced to 5
before the top-level reduction occurs.

To avoid this behavior, most functional languages implementations “don’t
evaluate under a λ.” Technically, we stop evaluating when we reach weak
head normal form (WHNF).

The strategy of applying normal-order reduction but stopping at WHNF’s is
known as call-by-name. Applicative-order reduction stopping at WHNF’s is
call-by-value.

Reducing only to WHNF provides another solution to the name clash
problem. If we start with a closed expression and never reduce under a
λ-binding, it’s easy to see that any argument we substitute along the way must
itself be closed. So there is no need to worry about free variables being
captured by the substitution (there are none!), which removes the need to do
α-renaming during substitution.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 23

Eager or Lazy?

The call-by-value strategy is used most imperative languages. (In functional
languages this is usually called eager evaluation.)

Although the call-by-name strategy appears better (they compute something
useful more often) they are significantly less efficient to implement.
Intuitively, this is because if the argument is a complicated expression, these
strategies must transmit the entire expression including the values of its free
variables, whereas call-by-value needs only to transmit the value of the
expression, which may be much simpler.

There’s another obvious problem with simple call-by-name: if an argument is
needed, it may be needed at several points in the body, and hence get reduced
several times. Practical implementations avoid this problem by sharing the
result of evaluating the argument at all points where it is used. This
combination of call-by-name with sharing is called call-by-need or (loosely)
lazy evaluation. (To model sharing, we need to change our tree representation
of λ-expressions to a graph.)

The best-known lazy functional language is Haskell; eager functional
languages include the (pure subsets of) Scheme and ML.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 24

Operational Semantics

Pierce textbook will (almost always) use call-by-value. The corresponding
evaluation rules (for the pure λ-calculus) are these:

t ::= x | λx.t | t t

v ::= λx.t

t1 → t′1
t1 t2 → t′1 t2

(E-APP1)

t2 → t′2
v1 t2 → v1 t

′
2

(E-APP2)

(λx.t12) v2 → [v2/x]t12
(E-APPABS)

Note the use of meta-variables v to control evaluation order. Evaluation of the
operator must precede evaluation of the operand, which must reach a value
before substitution can be performed.

Warning: Pierce uses a somewhat different formulation of applied λ-calculus.
Instead of modeling built-in operations as a predefined set of constant and
function names with δ-reduction rules, he adds them as separate syntactic
forms with their own evaluation rules.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 25

Recursion

Suppose we wish to define a recursive function, such as the factorial function:

FAC "=" (λn.if (= n 0) 1 (* n (FAC (- n 1))))

This definition is faulty: it relies on an ability to name a λ-expression (FAC)
and refer to that name from within the expression itself.

The problem is that λ-abstractions are anonymous. (We’ve named
λ-expressions before, but only as an abbreviation mechanism which could be
easily “unfolded.”) The only names a λ-abstraction can refer to are those of its
arguments (or the arguments to enclosing abstractions).

So the trick is to rewrite the recursive function so that it takes itself as an extra
argument! We do this by β-abstraction:

FAC "=" λn.(. . .FAC. . .)

becomes

FAC "=" (λf.λn.(. . .f. . .)) FAC

We can rewrite this legitimately as:

FAC ↔β H FAC where H ≡ λf.(λn.(. . .f. . .))

Note that H is a perfectly ordinary λ-abstraction that does not involve
recursion.

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 26

Fixed Points

The factorial function FAC is a solution to the equation

FAC ↔β H FAC

i.e., it is a function FAC such that the result of applying H to FAC is
convertible with FAC. We say that FAC is a fixed point of the function H.

It is easy to find fixed points for some functions. For example the function
λx.* x x has both 0 and 1 as fixed points. In general, a function may have
0, 1, some, or infinitely many fixed points.

It’s not so easy to see what a fixed point of H should look like, but for a
moment let’s just assume the existence of a function Y that takes any function
as argument and returns a fixed point of that function as result. That is, for any
function F,

F (Y F) ↔β Y F

Then, in particular, we have H (Y H) ↔β Y H, so

FAC ≡ Y H

is a solution to our equation for the factorial function that doesn’t involve
recursion!

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 27

Example

With our definitions

FAC ≡ Y H

H ≡ λf.λn.if (= n 0) 1 (* n (f (- n 1)))

we can now compute, e.g., factorial(1):

FAC 1
= Y H 1
↔β H (Y H) 1
= (λf.λn.if (= n 0) 1 (* n (f (- n 1))))

(Y H) 1
→β (λn.if (= n 0) 1 (* n (Y H (- n 1)))) 1
→β if (= 1 0) 1 (* 1 (Y H (- 1 1)))
→∗δ * 1 (Y H 0)
↔β * 1 (H (Y H) 0)
= * 1 ((λf.λn.if (= n 0) 1 (* n (f (- n 1))))

(Y H) 0)
→β * 1 ((λn.if (= n 0) 1 (* n (Y H (- n 1))))

0)
→β * 1 (if (= 0 0) 1 (* n (Y H (- 0 1))))
→δ * 1 1
→δ 1

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 28

Defining Y

We have seen that recursion can be expressed wholly in terms of a fixed-point
combinator Y. But how do we define Y?

We could build it into our applied λ-calculus as a special function with a
suitable δ-rule. In fact, this is more or less what is usually done in real
programming languages.

Amazingly, it is also possible to define Y as an ordinary expression in the pure
λ-calculus! Here is one definition:

Y ≡ λh.(λx.h (x x))(λx.h (x x))

Let’s check it out:

Y H
= (λh.(λx.h (x x))(λx.h (x x))) H
→β (λx.H (x x))(λx.H (x x))
→β H ((λx H (x x))(λx.H (x x)))
←β H ((λh.(λx.h (x x))(λx.h (x x))) H)
= H (Y H)

Note the similarity between this definition of Y and the looping expression (D
D). In fact, this version of Y doesn’t work with call-by-value evaluation
because it goes into an infinite loop!

Fortunately, there are many ways to write Y; here’s one that does work with
call-by-value:

Y ≡ λh.(λx.h(λy.x x y))(λx.h (λy.x x y))

Note that these two versions of Y are η-equivalent.

Yet another version, due to Turing, is Θ ≡ AA, where A ≡ λxy.y(xxy).

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 29

Pure Fun

In principle, we can do without built-in constants and δ-rules altogether by
encoding useful types and operators directly in the pure λ-calculus. In
general, this means using λ-abstractions to represent values.

For example, to model booleans we need a way of representing true and
false, functions corresponding to and, or, etc., and an equivalent of if
that selects one of two expressions based on the value of the boolean. Here’s
how:

true ≡ λx.λy.x
false ≡ λx.λy.y
if ≡ λf.λx.λy.f x y
and ≡ λx.λy.x y false

...

Example

if true 0 1
= (λf.λx.λy.f x y) true 0 1
→β (λx.λy.true x y) 0 1
→β (λy.true 0 y) 1
→β true 0 1
= (λx.λy.x) 0 1
→β (λy.0) 1
→β 0

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 30

Church Numerals

0 ≡ λf.λx.x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f(f x)
. . .

n ≡ λf.λx.
n times︷ ︸︸ ︷
f(f . . . (f x). . .)

succ ≡ λn.λf.λx.f(n f x)
iszero ≡ λn.n(λx.false) true ...

Example

succ 2

= (λn.λf.λx.f(n f x)) 2

→β λf.λx.f(2 f x)
= λf.λx.f((λf.λx.f(f x)) f x)
→β λf.λx.f((λx.f(f x)) x)
→β λf.λx.f(f(f x))
= 3

Note that these reductions only work as we expect if we use full β-reduction
underneath λs. If we stop at HNF, we get much more complicated expressions
which don’t look like Church numerals at all!

PSU 578 Programming Language Semantics Spring’24 Lambda Calculus © Andrew Tolmach 1993-2024 31

Data Constructors

pair ≡ λx.λy.λf.f x y
fst ≡ λp.p(λx.λy.x)
snd ≡ λp.p(λx.λy.y)

Example

pair 1 2 = (λx.λy.λf.f x y) 1 2 →∗β λf.f 1 2

so

fst (pair 1 2)
= (λp.p(λx.λy.x))(λf.f 1 2)
→β (λf.f 1 2)(λx.λy.x)
→β (λx.λy.x) 1 2
→∗β 1

Note that pairs and booleans are encoded in essentially the same way!

