
CS578
Programming Language Semantics

Spring’24 Lecture Notes
Type Inference

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 1

Type Inference

Type inference is the problem of producing a well-typed term from an
untyped term. Having a type inference mechanism for a language can be
very useful, since it saves the programmer from having to declare the types of
all identifiers (though such declarations are still permitted).

Type inference is not possible for every language and typing system, but there
is a type inference algorithm relating the untyped and simply-typed λ-calculi.

Formally, we define a function erase, which takes a typed term, removes all
the type annotations from the λ-bindings, and returns the resulting untyped
term.

An untyped term M is typable if there exists a (simply-)typed term M’, a type
τ and an environment E (with FV(M) ⊆ Dom(E)) such that

E ⊢ M ′ : τ and M = erase(M ′)

A (typable) untyped term may be the erasure of more than one typed term.
Example: λx.x is the erasure of both λx:int.x and λx:bool.x.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 2

Type Schemes

To make the type inference algorithm precise, it is helpful to extend the
language of type expressions to include type variables, denoted by
{α, β, γ, . . .}.

The resulting grammar for type schemes is:

τ ::= b | α | τ1 → τ2 (b ∈ B)

They are called schemes because each expression can be thought of as a
schematic representation of a whole family of (ordinary) types, produced by
instantiating the type variables with ordinary types.

Examples

α

α → β

α →(int→ α)
bool

An ordinary type is just a type scheme with no type variables. They are also
called ground types or monotypes.

We modify our typing system so that typing rules, environments, λ-binding
annotations, assertions, etc., all refer to type schemes where they used to refer
to ground types. All this requires is a suitable change in the interpretation of
the metavariables τ .

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 3

Type Inference

Our type inference algorithm will produce a type scheme for a given
expression (in a given environment). Working with type schemes allows us to
concentrate on the structure of the term being typed (and the corresponding
typing derivation), which is the same regardless of the specific types in
question.

Recall that the form of a type derivation for a given term is a tree isomorphic
to the syntax tree for the term. To infer a type for the term, we start with a
derivation tree of the correct form in which

• each λ-binding type scheme annotation is a fresh type variable

• the type scheme of each term is a fresh type variable.

Example λy.y 3

{y:α0} ⊢ y:α3
V AR {y:α0} ⊢ 3:α4

CONST

{y:α0} ⊢ (y 3):α2
APP

∅ ⊢ (λy:α0.y 3):α1
ABS

To make this a valid derivation, certain relationships must hold between the
type variables mentioned in adjacent rules. We can express these in the form
of equations between type schemes. These equations represent constraints
on the possible (valid) instantiations of the type variables.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 4

Example continued

{y:α0} ⊢ y:α3
V AR {y:α0} ⊢ 3:α4

CONST

{y:α0} ⊢ (y 3):α2
APP

∅ ⊢ (λy:α0.y 3):α1
ABS

Each use of an axiom or rule produces one constraint equation. In this
example, we get the following

ABS rule: α1 = α0 → α2

APP rule: α3 = α4 → α2

VAR rule: α3 = α0

CONST rule: α4 = int

To produce a valid type derivation, we must solve all the constraint equations
simultaneously.

Here’s one way to do this. We eliminate α3 and α4 using the (CONST) and
(VAR) constraints, leaving

α1 = α0 → α2

α0 = int → α2

Substituting the second equation into the first, we get:

α1 = (int → α2) → α2

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 5

Example continued again

Instantiating the original typing tree with this solution, we have the following
derivation:

{y:int → α2} ⊢ y:int → α2
V AR {y:int → α2} ⊢ 3:int

CONST

{y:int → α2} ⊢ (y 3):α2
APP

∅ ⊢ (λy:int → α2.y 3):(int → α2) → α2
ABS

It is easy to see that every instance of

∅ ⊢ (λy:int → α2.y 3):(int → α2) → α2

i.e., every assertion resulting from instantiation of the remaining type variable
(α2), will also be derivable. Moreover, since this scheme was constrained as
minimally as possible, every derivable scheme must be an instance of it.

Such a type scheme is called principal. The approach outlined here always
generates a principal type scheme (if the given term is typable).

The inference algorithm consists of two steps:

• The term’s structure is analyzed to derive a set of constraint equations. This
can be described simply in terms of the syntax tree.

• The equations are solved simultaneously. This is an instance of the
unification problem.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 6

Constraints

(CONST) E⊢c:τ (TypeOf(c) = τ) c

6

τ ′
τ = τ ′

(VAR) E⊢x:τ (E(x) = τ) x

6

τ ′
τ = τ ′

(ABS)
E + {x:τ} ⊢ M:τ ′

E ⊢ (λx:τ.M):τ ′′

λx:τ

6

τ ′′

?

τ ′
τ ′′ = τ → τ ′

(APP) E ⊢ M:τ E ⊢ N:τ ′
E ⊢ (MN):τ ′′

@

6

τ ′′

@
@
@@R

τ �
�

��	

τ ′
τ = τ ′ → τ ′′

Given a complete expression, we patch the patterns together to get constraint
equations, e.g.:

y

@

3

λy:α0

�
��

@
@@

6

α3 α4

α2

α1
- α1 = α0 → α2

- α3 = α4 → α2

- α4 = intPPPPPPPPPPPP - α3 = α0

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 7

Constraint Equations

We now have a collection of equations between type schemes

τ11 = τ12
τ21 = τ22
. . .

τn1 = τn2

to be solved simultaneously.

This is a special case of the general problem called unification. A solution to
a unification problem is a substitution from variables to terms that makes all
the equations true. Such a substitution is called a unifier.

Example: the set of equations

α1 = α0 → α2

α3 = α4 → α2

α4 = int

α3 = α0

has the unifier

S = { α1 7→ (int → α2) → α2,

α0 = α3 7→ int → α2,

α4 7→ int}

Moreover, S is a most general unifier, meaning that every unifying
substitution S ′ can be obtained from S by a further substitution.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 8

Unification

In general, the unification problem is as follows:

Given a set of equations between terms built from variables and constructors
of (fixed) arity ≥ 0, either:

• compute a most general unifier that solves the equations; or

• report that the equations have no solution.

(It can be proved that if the set of equations have any unifier, they have a most
general unifier.)

Unification is a widely applicable technique; e.g., it is a fundamental
computational process in logic programming languages such as Prolog. There
are several efficient algorithms known for computing unifiers.

For type inference, we specialize the problem as follows:

• the variables are type variables;

• there is one constructor (→) of arity 2;

• each base type is treated as a constructor of arity 0.

If there is a most general unifier for the equations, it yields a principal
schematic typing for the original λ-expression. If there is no solution, the
original expression is not typable.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 9

A Unification Algorithm

The essence of unification is the recursive traversal of two terms to be equated
(“unified”).

We denote a substitution by S, and extend its domain from variables to
arbitrary terms in the obvious way. Substitutions can be composed; we write
S1 ◦ S2 to mean the result of applying S2 and then S1.

Function U takes an existing substitution and two terms, and returns an
extension of the original substitution that unifies the terms (if possible):

U(S, t1, t2) =
case (S(t1), S(t2)) of
(v1, v2) : (v1 7→ v2) ◦ S

(v1, t
′
2) : if v1 occurs in t′2 then error ‘‘No Unifier”

else (v1 7→ t′2) ◦ S

(t′1, v2) : if v2 occurs in t′1 then error ‘‘No Unifier”
else (v2 7→ t′1) ◦ S

(C1(t11, t12, . . . , t1m), C2(t21, t22, . . . , t2n)) :
if C1 ̸= C2

or m ̸= n then error ‘‘No Unifier”
else U(. . . U(U(S, t11, t21), t12, t22) . . . , t1m, t2m)

To find the m.g.u. of a set of equations

t11 = t21, t12 = t22, . . . , t1n = t2n

we calculate U(. . .U(U(∅, t11, t21), t12, t22) . . . , t1n, t2n)

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 10

Example Again

Use the unification algorithm to solve the set of constraints generated from
λx.x 3. To make the role and arity of the constructors clearer, we rewrite the
infix → constructor as the prefix arity-2 constructor C→, and the base type
int as the arity-0 constructor Cint.

α1 = C→(α0, α2)

α3 = C→(α4, α2)

α4 = Cint

α3 = α0

We calculate the m.g.u. by calling U on each equation in turn, passing the
result substitution of each call as the initial substitution for the next:

S1 = U(∅, α1, C→(α0, α2))

S2 = U(S1, α3, C→(α4, α2))

S3 = U(S2, α4, Cint)

m.g.u. = S4 = U(S3, α3, α0)

(Notice that the result substitution grows steadily; the algorithm never
backtracks. An efficient implementation can therefore maintain a single
substitution in a global variable rather than threading it through each call to
U .)

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 11

Example continued

To pursue the calculation:

S1 = { α1 7→ C→(α0, α2)}
S2 = { α3 7→ C→(α4, α2)} ◦ S1

= { α1 7→ C→(α0, α2),

α3 7→ C→(α4, α2)}
S3 = { α4 7→ Cint} ◦ S2

= { α1 7→ C→(α0, α2),

α3 7→ C→(Cint, α2),

α4 7→ Cint}
S4 = { α0 7→ C→(Cint, α2)} ◦ S3

= { α1 7→ C→(C→(Cint, α2), α2),

α3 7→ C→(Cint, α2),

α4 7→ Cint,

α0 7→ C→(Cint, α2)}

This is the same m.g.u. we derived before by ad-hoc substitution.

Note that the compositions performed in the calculation of S1 and S2 are
trivial, whereas those in S3 and S4 are less so.

It is crucial to remember that the substitution argument to U must be applied
to both the term arguments before performing the case dispatch. This is
illustrated in the calculation of the new substitution component of S4.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 12

Polymorphism

Polymorphism means using the same code to operate on values of different
types at different points in the same program. We are mainly interested in
so-called parametric polymorphism, which refers to functions that are
“oblivious” to the types of their arguments. An example is the function

pair ≡ λx.(x,x)

which forms pairs of any type. Obviously, we need some conventions for
uniform data representation in order to actually compile such functions.

We distinguish this from ad-hoc polymorphism, a.k.a. overloading, where
the same source code function must have different runtime behavior
depending on its argument’s types, e.g.,

double ≡ λx.x + x

which has different behavior for x:real and x:int.

We want a type system for polymorphism that is (efficiently) decideable,
sound, and has an (efficient decideable) inference algorithm.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 13

Limitations of schemes

We already are part-way there through our use of type schemes.

When we derive a schematic type for pair, e.g.,

∅ ⊢ λx.(x,x) : α → (α× α)

this implies that the application of pair to an expression of any type τ will
type-check, with α being unified to τ .

Unfortunately, we have no way to express the idea that pair may be used
with different types in different parts of the same expression, because this
would require unifying α with two conflicting types.

For example, the following will not type-check:

(λf.(f 3, f true))(λx.(x,x))

since α would need to unify with both int and bool.

What we need is a way to quantify type variables over sub-expressions, so
they can be instantiated to different types at different points in the expression.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 14

2nd-order Polymorphic λ-calculus

One way to express polymorphic programs of this kind is to use an
explicitly-typed calculus which allows abstraction and application of type
variables as well as ordinary variables.

Examples

(λf:∀α.α → (α× α).(f [int] 3, f [bool] true))
(Λα.λx:α.(x,x))

(λa:int.λb:bool.λf:∀α.α → α.(f [int] a,f [bool] b))

1 true (Λα.λx:α.x)

In general, expressions are:

M := c Built-in constants
| v Variable names
| (M1M2) Function applications
| (λv : σ.M) Function abstractions
| (Λα.M) Type abstractions
| (M [σ]) Type applications

where polymorphic type schemes are:

σ := b | α | σ1 → σ2 | ∀α.σ

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 15

ML Polymorphism

It is perfectly possible to give (sound) typing rules for the 2nd-order
polymorphic calculus. We’ll investigate this in the next chapter. But
meanwhile we want a type inference mechanism, so that the user doesn’t have
to write down these complex types.

Unfortunately, this calculus has no principal types, and typability of untyped
terms is actually undecidable.

So nearly all FL’s use a more restrictive style of polymorphism (called
ML-polymorphism, let-style polymorphism, Hindley-Milner
polymorphism, etc.) for which there is an inference algorithm.

The key idea is that we can do inference successfully if we have a visible
definition for every polymorphic function.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 16

Syntax

We use the following untyped syntax for expressions:

M := c Built-in constants
| v Variable names
| (M1M2) Function applications
| (λv.M) Function abstractions
| (let v = M1 in M2) let abstractions

Note that let is now a basic expression form in its own right. let x = a
in b still has the same operational semantics as (λx.b)a, but the two
expressions will be different for typing purposes. Specifically, let is used to
define expressions that are to be used polymorphically.

We would rewrite our first earlier example as:

let f = λx.(x,x) in (f 3, f true)

The use of let is essential; we can’t write the body here as an ordinary
λ-abstraction

λf.(f 3, f true)

as this will still not type check.

We cannot express the second example at all, however; this style of
polymorphism is strictly less powerful.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 17

Top-level Expressions

Note that expressions entered at the “top-level” in CAML are treated like
let-bound expressions; that is, for typing purposes the sequence

let a = exp1;;
let b = exp2;;
...;;

is equivalent to

let a = exp1 in let b = exp2 in ...;;

In particular, library functions are treated as if they were let-bound in the
scope of ordinary programs.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 18

ML Polymorphism Type System

We can give rules similar to the ones we introduced earlier for the
simply-typed λ-calculus.

In these rules, we use ordinary type schemes just as before

τ ::= b | α | τ1 → τ2 | τ1 × τ2 | . . . (b ∈ B)

and also polymorphic type schemes of the following form

σ ::= τ | ∀α.σ

Note that in these polymorphic schemes any quantifiers always come first.
For example,

∀α.(α → (α× α))

is a legitimate polymorphic scheme;

(∀α.α) → (∀α.α)

is not.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 19

Instantiation

To get an (ordinary) type scheme from a polymorphic scheme
σ ≡ ∀α1∀α2 . . . ∀αn.τ we instantiate each of the quantified type variables with
a type. The resulting scheme will be of the form τ ′ ≡ S(τ), where S is
substitution with domain {α1, . . . , αn}. In this case we write

σ > τ ′

Examples

∀α.∀β.α → γ → β > int → γ → bool

with S = {α 7→ int, β 7→ bool}
∀α.∀β.α → γ → β > int → γ → (δ → δ)

with S = {α 7→ int, β 7→ (δ → δ)}
∀α.α → β → α ̸> int → bool → int

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 20

Typing Rules

In these rules, environments E map (expression) variables to polymorphic
type schemes, and TypeOf also returns a polymorphic scheme.

Typeof(c) > τ
E ⊢ c:τ CONST

E(x) > τ
E ⊢ x:τ V AR

E + {x : τ1} ⊢ M : τ2
E ⊢ (λx : τ1.M) : τ1 → τ2

ABS

E ⊢ M : τ1 → τ2 E ⊢ N : τ1
E ⊢ (MN) : τ2

APP

E ⊢ M : τ E + {x : Clos(τ, E)} ⊢ N : τ1
E ⊢ let x = M in N : τ1

LET

Here Clos(τ, E) denotes the “closure” of the type τ formed by abstracting over
all the free type variables in τ that are not free in E.

Formally

Clos(τ, E) = ∀α1∀α2 . . . ∀αnτ

where {α1, α2, . . . , αn} = FV (τ)− FV (E).

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 21

Example Derivation

We show a typing derivation for our previous example

let f = λx.(x,x) in (f 3, f true)

To handle this example, we need to add a typing rule to deal with the pair
type constructor.

E ⊢ M1 : τ1 E ⊢ M2 : τ2
E ⊢ (M1,M2) : τ1 × τ2

PAIR

The derivation is then as follows:

E1 ⊢ x : α
V AR

E1 ⊢ x : α
V AR

E1 ⊢ (x,x) : (α × α)
PAIR

∅ ⊢ λx.(x,x) : α → (α × α)
ABS

E2 ⊢ f : int → (int × int)
V AR

E2 ⊢ 3 : int
CONST

E2 ⊢ f 3 : (int × int)
APP

E2 ⊢ f : bool → (bool × bool)
V AR

E2 ⊢ true : bool
CONST

E2 ⊢ f true : (bool × bool)
APP

E2 ⊢ (f 3, f true) : ((int × int) × (bool × bool))
PAIR

∅ ⊢ let f = λx.(x,x) in (f 3, f true) : ((int × int) × (bool × bool))
LET

where:

E1 = {x : α}
E2 = {f : ∀α.α → (α× α)}

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 22

The Closure Rule

In the previous example, the Clos rule generalized all the type variables in the
type derived for the let-defining expression. But in general, the rule acts to
avoid abstracting over type variables that are really acting as type constants in
the current environment.

Consider this example:

λx.let f = λy.x in ((f 3) + 1, not(f 3))

Obviously, this should not be typable, since no x can be a legitimate argument
to both + and not. But without the restrictions on closures, we could derive
its type as

α → (int× bool).

The problem would arise because we would type the pair expression in the
environment:

{x : α, f : ∀α∀β.β → α}

But the α in the type scheme for x and the α in the type scheme for f must be
the same α, so the polymorphic scheme for f should really be quantified only
over β.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 23

Type Inference

Notice that type abstraction always occurs as part of the LET rule and type
application occurs as part of the VAR rule. Because of this, polymorphic
schemes appear only in the environment; they are never attached directly to
expressions. Sometimes a similar system is given with type abstraction and
application split out as separate rules; the systems are equivalent.

The advantage of our approach is that, as in the simply-typed case, there is at
most one rule applicable to any expression, which can be chosen based
completely on its syntactical form. As before, this gives an immediate type
inference algorithm for this system: use the syntactical structure to generate a
schematic derivation and a set of constraints, and use unification to solve the
constraints.

In practice, the derivation and solution of the constraints is normally
combined into a one-pass algorithm over the structure. For historical reasons,
the inference algorithm for ML-style polymorphism is called Algorithm W;
see text.

The key point about this algorithm is that a polymorphic schematic type of a
let-bound variable is always deduced before the variable’s uses are
inspected; this is what makes inference feasible.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 24

Efficiency of Algorithm W

Interestingly, this is an example of an algorithm that is efficient in practice but
very inefficient (deterministic exponential time complete) in theory. For
example, the following nasty example

let pair = λx.λy.λz.zxy
in let x1 = λy.pair y y

in let x2 = λy.x1(x1(y))
in ...

in let xn = λy.xn−1(xn−1(y))
in xn(λz.z)

produces a principal type of length 22
cn

(as a string). For n = 5 this produces
173 printed pages of output after several hours.

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 25

Recursion

As before, we can’t define the Y combinator directly in an ML-polymorphism
type system, so we need to add explicit support for recursion. Here’s a
possible definition for a LETREC rule:

E + {f : τ2 → τ1,x : τ2} ⊢ M : τ1 E + {f : Clos(τ2 → τ1, E)} ⊢ N : τ
E ⊢ letrec f = λx.M in N : τ

Example

letrec map = λf.λx.if null x
then nil
else cons(f (hd x),map f (tail x))

in map negate [1,2,3]; map not [true,false]

will typecheck correctly as expected, with map being given a polymorphic
type scheme

∀α.∀β.(α → β) → α list → β list.

Note that this typing rule doesn’t allow us to define a recursive function that
invokes itself in a polymorphic way, e.g.:

letrec f = λn.λx.if n = 0
then x
else f (n-1) (x,x)

Unfortunately, if we extend the typing system to permit expressions of this
kind to be typable, type inference becomes undecidable!

PSU 578 Programming Language Semantics Spring’24 Type Inference © Andrew Tolmach 1993-2024 26

Side-effects

We have to be very careful in extending these typing rules to programs with
side-effects. For example, we might naively add the following polymorphic
type schemes for ML-style references to TypeOf:

{ ref : ∀α.α → α ref,

:= : ∀α.α ref → α → unit,

! : ∀α.α ref → α}

where ref is a new type constructor.

Unfortunately, under these rules the following expression is typable, though it
surely shouldn’t be!

let r = ref(λx.x) in
(r := λx.x+1; (!r) true)

Intuitively, the problem is that we infer the type (α → α) ref for r’s
defining expression, and then abstract over α to form a polymorphic scheme
for r. This abstraction is bogus, since α really refers to the particular type of
the value currently held by the reference.

Similar problems arise with other imperative features, such as exceptions.
Various solutions to these problems have been proposed and implemented.
The cleanest is to put a restriction on the form of let definitions, namely that
the defining expression must be a λ-abstraction, a constant, or a simple
variable. In all these cases, the cbv evaluation of the expression is essentially
a no-op, which turns out to avoid the typing problems.

