
IMP and Denotational Semantics

Andrew Tolmach

June 1, 2024

To study the essence of imperative languages, many authors use a somewhat different system
than TAPL’s Ch. 13 STLC+References. This may go under the name IMP (for “Imperative
Language”), LC (“Language of Commands”) or just “While language” (for reasons that will become
clear). Although details may vary, the basic idea of the language is that programs are made up of
commands, which operate on a state that maps mutable variables to values. There is no separate
notion of first-class references. In the simplest versions of IMP there are no functions, and hence
perforce no recursion. On the other hand, there is a while command that performs (possibly
infinite) iteration, so the language is Turing-complete.

In addition to giving a simple account of mutable variables that is close to the behavior of many
imperative languages, IMP is also a good vehicle for introducing denotational semantics, a semantic
framework that is much less “syntactic” than the operational semantics we have seen so far. (IMP
is also widely used to introduce axiomatic semantics (or programming logics) used when proving
properties of programs, but we will not cover these.)

1 Syntax of IMP

Commands, which do not produce a value, are syntactically distinguished from arithmetic and
boolean expressions, which do.

a ::= x

0

succ a

pred a

b ::= true

false

not b

iszero a

c ::= skip do nothing
x := a assignment
c1; c2 sequencing
if b then c else c conditional
while b do c iteration

For simplicity and familiarity, we will take the arithmetic and boolean expressions to be those of

1

TAPL Ch. 3, except that (i) if-then-else is now a command rather than a boolean expression;
(ii) we add a not operator on booleans; and (iii) variables can only hold numbers, not booleans.
(Most presentations of IMP support richer sets of arithmetic and boolean operators, but this is
inessential.) Variables all have global scope (there is no mechanism for declaring them).

Our main focus is on the set of commands, which are intended to have the usual intuitive semantics.
The skip command is useful for forming one-armed conditionals (e.g., that do nothing in the else
case) and is also needed in intermediate forms that arise during small-step evaluation. As given,
the syntax for commands is ambiguous (because of the sequencing operator); we will feel free to
add parentheses where necessary to clarify the intended parse.

Note that because arithmetic and boolean expressions are syntactically disjoint, it is impossible to
construct an (intuitively) ill-typed term. Again, this restriction is not essential, but it avoids the
need to give explicit typing rules—although it is straightforward to do so, bearing im mind that
commands do not have types (since they do not produce values).

Example: The following (silly) program sums the initial values of y and z, leaving the result in
both variables:

while not (iszero y) do (z := succ z; y := pred y); y := z

2 Big-step Semantics

It is not hard to give operational stepping rules for IMP, once we fix a mechanism for describing
the state. We follow the scheme of TAPL Ch. 13 by tracking a state σ along with the term being
reduced. However, for IMP, the state is a mapping directly from variable names to (arithmetic)
values, without any intermediate notion of “locations.” (Alternatively, one can think of the variables
as being locations.) We use σ instead of µ to represent states, to emphasize that the domain of the
mapping is slightly different.

We choose to give a big-step semantics, as these rules are slightly simpler than the small-step ones,
and make a better comparison with the denotational approach to come later. We require three
separate relations, one for each syntactic category. The expression evaluation relations ⇓a and
⇓b relate an expression and an initial state to a final value; evaluation never changes the state.
The command evaluation relation ⇓c relates a command and an initial state to (just) a final state;
evaluation does not produce a value.

Arithmetic (numeric values nv are as in TAPL Ch.3):

σ(x) = v

x | σ ⇓a v
(B-Var)

0 | σ ⇓a 0 (B-Zero)

a | σ ⇓a nv

succ a | σ ⇓a succ nv
(B-Succ)

a | σ ⇓a 0

pred a | σ ⇓a 0
(B-PredZero)

2

a | σ ⇓a succ nv

pred a | σ ⇓a nv
(B-PredSucc)

Note that we treat states σ as being finite; a program that tries to read the value of an undefined
variable will have no semantics at all (since the premise of B-Var will fail).

Booleans:

true | σ ⇓b true (B-True)

false | σ ⇓b false (B-False)

b | σ ⇓b true

not b | σ ⇓b false
(B-NotTrue)

b | σ ⇓b false

not b | σ ⇓b true
(B-NotFalse)

a | σ ⇓a 0

iszero a | σ ⇓b true
(B-IszeroZero)

a | σ ⇓a succ nv

iszero a | σ ⇓b false
(B-IszeroSucc)

Commands:

skip | σ ⇓c σ (B-Skip)

a | σ ⇓a nv

x := a | σ ⇓c [x 7→ nv]σ
(B-Assign)

c1 | σ ⇓c σ1 c2 | σ1 ⇓c σ2

c1; c2 | σ ⇓c σ2
(B-Seq)

b1 | σ ⇓b true c2 | σ ⇓c σ2

if b1 then c2 else c3 | σ ⇓c σ2
(B-IfTrue)

b1 | σ ⇓b false c3 | σ ⇓c σ3

if b1 then c2 else c3 | σ ⇓c σ3
(B-IfFalse)

b1 | σ ⇓b false

while b1 do c2 | σ ⇓c σ
(B-WhileFalse)

b1 | σ ⇓b true c2 | σ ⇓c σ2 while b1 do c2 | σ2 ⇓c σ
′

while b1 do c2 | σ ⇓c σ
′ (B-WhileTrue)

The most interesting case is for while. Its semantics are inspired by the observation that

3

while b1 do c2

should behave the same way as its “one step unfolding”

if b1 then (c2; while b1 do c2) else skip.

At first sight, the B-WhileTrue rule might seem circular in its third premise: how can we evaluate
a term by appealing recursively to the evaluation of the same term? The answer is that the premise
does the evaluation in the (potentially) different state σ2 that results from evaluating the body of
the while. In particular, if evaluating the body changes the state so as to make the test condition
b1 become false, the recursive invocation will use rule B-WhileFalse and the loop will terminate.
(On the other hand, if the condition never does go false, we will never be able to construct a finite
derivation, so this semantics won’t tell us anything about the behavior of the while command; this
is the same problem we encountered with big-step semantics for the λ-calculus.) So B-WhileTrue
is a perfectly reasonable rule. However, it does have one drawback. Every other rule for IMP is
compositional, which means that its premises only mention properties of sub-terms of term in its
conclusion. Compositional rules are nice because they support reasoning by structural induction
over terms. B-WhileTrue is not compositional, since the entire while term from the conclusion
appears unchanged in the third premise. (The application rule for the λ-calculus is similarly non-
compositional.)

Exercise 1: Give a small-step semantics for IMP. The stepping rules for arithmetic and boolean
expressions are completely straightforward with the addition of a memory as in the big-step case.
To evaluate commands, it is useful to treat skip as a normal form, to which other commands
(notably assignment) may reduce; it plays a role analogous to unit in STLC. To evaluate while,
use the one-step unfolding trick above.

3 A Taste of Denotational Semantics

Denotational semantics is an approach is which we give each term in the language a meaning (its “de-
notation”) in a mathematically-defined semantic domain. Unlike the rewriting-based operational
semantics we have seen so far, which are basically all about manipulating syntax, denotational
semantics lets us describe program meaning directly in terms of mathematical abstractions (often
functions). This can make it easier to compare the meanings of different programs, in particular if
they are written in different languages.

A denotational semantics is defined by giving a meaning function for each different kind of term,
mapping it to a suitable semantic domain. For example, if we consider just a language of arithmetic
expressions with no variables, the semantic domain might be the natural numbers N = {0, 1, 2, . . .},
and the meaning function would assign a value n ∈ N to every expression. Typically this will involve
recursive invocation of the meaning function on sub-expressions. We require all meaning functions
to be compositional; among other things, this guarantees that any recursions are well-founded.

For IMP, the value of an arithmetic or boolean expression depends on the values of variables in
the state, so the meaning of these expressions will themselves be functions from states to naturals
(N) and booleans (B = {True,False}) respectively. (Here we write True and False in italics to
emphasize that these are truth values in an abstract mathematical set, rather than terms in the
original language.) Similarly, a state σ ∈ Σ itself is now a function from the set of variable names

4

(Var) to natural numbers (N) (rather than to terms nv). Also, for simplicity, we now treat states
as total functions defined on all possible variable names; for example, we might choose to define an
initial environment mapping all variables to the natural number 0.

Finally, what should be the meaning of an IMP command? We have already observed that the
effect of evaluating a command is simply to modify the state. This suggests defining the meaning as
being a function from states to states (Σ → Σ). (A function like this that itself takes a function as
an argument and returns a function as a result is sometimes called a functional, or, more generally,
a “higher-order” function.) But recalling that IMP contains a while construct, we can foresee
a need to define the meaning of non-terminating (or diverging) computations, so we actually use
a slightly richer notion. We will write ⊥ (pronounced “bottom” or “diverge”) to represent an
“undefined” or “unknown” state, and write Σ⊥ for Σ∪ {⊥}, i.e. the extension of the state domain
with a bottom element. (This is sometimes called the “lifted” state domain. More generally, we
can define S⊥ = S ∪ {⊥} for any set S.) The meaning of IMP commands will be be functions of
the form Σ → Σ⊥. (Alternatively, these can be viewed as partial functions from states to states,
written Σ ⇀ Σ, where a function is considered to be undefined on values that map to ⊥.)

It is traditional to use double square brackets ([[]]), sometimes called “Oxford brackets,” to spec-
ify the meaning function for each term. For example, the meaning function for IMP arithmetic
expressions is:

[[a]]a : Σ → N

[[x]]a = λσ.σ(x)
[[0]]a = λσ.0
[[succ a]]a = λσ.[[a]]a(σ) + 1
[[pred a]]a = λσ.[[a]]a(σ) ·− 1

Note that here we are using λ notation on the right-hand sides just as a convenient mechanism
for writing down (anonymous) function definitions, but these are ordinary mathematical functions,
not expressions in the lambda calculus! Similarly, the symbols 0 is the natural number zero and +
and ·− (pronounced “monus”) are ordinary mathematical operations on the natural numbers.1

The meaning function for IMP boolean expressions is similar:

[[b]]a : Σ → B

[[true]]a = λσ.True
[[false]]a = λσ.False
[[not b]]a = λσ.¬[[b]]b(σ)

[[iszero a]]a = λσ.

{
True if [[a]]a(σ) = 0
False if [[a]]a(σ) > 0

Finally, we turn to the meaning function for commands.

1Monus is defined as x ·− y =

{
x− y if x ≥ y
0 otherwise

5

[[c]]c : Σ → Σ⊥
[[skip]]c = λσ.σ
[[x := a]]c = λσ.[x 7→ [[a]]a(σ)]σ
[[c1; c2]]c = [[c2]]c ◦⊥ [[c1]]c

[[if b1 then c2 else c3]]c = λσ.

{
[[c2]]c(σ) if [[b1]]b(σ) = True
[[c3]]c(σ) if [[b1]]b(σ) = False

[[while b1 do c2]]c = fix (F)

where F = λw.λσ.

{
σ if [[b1]]b(σ) = False
(w ◦⊥ [[c2]]c)(σ) if [[b1]]b(σ) = True

Let us consider each command in turn.

• Since skip does nothing, its denotation is just the identity function on states.

• x := a updates the state by changing (just) the value corresponding to x. The value of a is
computed in the original (unchanged) state.

• The sequence of commands c1; c2 first modifies the state according to c1 and then according
to c2. Formally, it is written as a slightly non-standard form of function composition that
propagates ⊥:

f ◦⊥ g = λx.

{
⊥ if g(x) = ⊥
f(g(x)) otherwise

• The effect of a conditional depends on the truth value of its test expression, in the obvious
way.

• The semantics of a while loop are again based on the notion of a one-step unfolding. We
would like the semantics defined so that

[[while b1 do c2]]c = [[if b1 then (c2; while b1 do c2) else skip]]c

Setting w = [[while b1 do c2]]c and unfolding the denotation function on the right-hand side,
we get

w = λσ.

{
σ if [[b1]]b(σ) = False
(w ◦⊥ [[c2]]c)(σ) if [[b1]]b(σ) = True

To solve this recursive equation, we abstract over w to define the functional F : (Σ → Σ⊥) →
(Σ → Σ⊥), as shown above, and then use the fix operator to find the least fixed point of F .
Since F is now a genuine mathematical function, we need to confirm that it actually has a
fixed point. (Not every function does; e.g. consider λx.(x+1).) As we’ll discuss in more detail
later, F does have a (least) fixed point, but it might turn out to be the function λσ.⊥ that
maps every initial state to the undefined state (which is why we extended the codomain of
denotation functions to include ⊥ in the first place). In particular, this will be the denotation
we get for infinite loops such as while true do skip.

In working with the meaning of while commmands, we will make heavy use of the funda-
mental property of fix , namely that F (fix (F)) = fix (F).

6

Note that, unlike the big-step semantics, the denotational semantics for commands is compositional.
Again, this is one of the hallmarks of denotational semantics.

Example 1. To illustrate how the meaning function is applied and what it can be useful for, we
will show that [[x := succ x; x := pred x]]c = [[skip]]c. First, for any σ, we have

[[x := succ x]]c(σ) = [x 7→ [[succ x]]c(σ)]σ

= [x 7→ [[x]]c(σ) + 1]σ

= [x 7→ σ(x) + 1]σ

(1)

Similarly,
[[x := pred x]]c(σ) = [x 7→ σ(x) ·− 1]σ (2)

We also note (without proof) several useful generic properties of state update:

([x 7→ n]σ)(x) = n (3)

[x 7→ n2]([x 7→ n1]σ) = [x 7→ n2]σ (4)

[x 7→ σ(x)]σ = σ (5)

Then, for any σ, we can compute:

[[x := succ x; x := pred x]]c(σ)
= ([[x := pred x]]c ◦⊥ [[x := succ x]]c)(σ) by definition of [[]]c
= [[x := pred x]]c(σ

′) by (1) and definition of ◦⊥, where σ′ = [x 7→ σ(x) + 1]σ
= [x 7→ σ′(x) ·− 1]σ′ by (2)
= [x 7→ (σ(x) + 1) ·− 1]σ′ by definition of σ′ and (3)
= [x 7→ σ(x)]σ′ by arithmetic
= [x 7→ σ(x)]σ by definition of σ′ and (4)
= σ by (5)
= [[skip]]c(σ) by definition of [[]]c

□

Exercise 2. Prove the following identity:

[[x := 0; if iszero y then x := y else y := x]]c = [[x := 0; y := 0]]c

Example 2. Let σ0 be the state that maps every variable to 0. To show how to compute using fixed
points, we prove that if σ1 = [x 7→ 2]σ0 then [[while not (iszero x) do x := pred x]]c(σ1) = σ0.

To start with, we have

[[while not (iszero x) do x := pred x]]c = fix (F)

where
F = λw.λσ.if [[not (iszero x)]]b(σ) then (w ◦⊥ [[x := pred x]]c)(σ) else σ

For any state σ we have

[[not (iszero x)]]b(σ) = ¬[[iszero x]]b(σ)

= ¬([[x]]a(σ) = 0)

= [[x]]a(σ) > 0

(6)

7

Using this and (2) from the previous example, we have

F = λw.λσ.if σ(x) > 0 then w([x 7→ σ(x) ·− 1]σ) else σ (7)

Now, in particular, we can compute

[[while not (iszero x) do x := pred x]]c(σ1)
= fix (F)(σ1)
= F (fix (F))(σ1) by fundamental property of fix
= if σ1(x) > 0 then fix (F)([x 7→ σ1(x) ·− 1]σ1) else σ1 by (7)
= if 2 > 0 then fix (F)([x 7→ 2 ·− 1]σ1) else σ1 by definition of σ1
= fix (F)(σ2) where σ2 = [x 7→ 1]σ1
= F (fix (F))(σ2) by fundamental property of fix
= if σ2(x) > 0 then fix (F)([x 7→ σ2(x) ·− 1]σ2) else σ2 by (7)
= if 1 > 0 then fix (F)([x 7→ 1 ·− 1]σ2) else σ2 by definition of σ2
= fix (F)(σ3) where σ3 = [x 7→ 0]σ2
= F (fix (F))(σ3) by fundamental property of fix
= if σ3(x) > 0 then fix (F)([x 7→ σ3(x) ·− 1]σ3) else σ3 by (7)
= if 0 > 0 then fix (F)([x 7→ 0 ·− 1]σ3) else σ3 by definition of σ3
= σ3
= [x 7→ 0]([x 7→ 1]([x 7→ 2]σ0)) by definitions of σ3, σ2, σ1
= σ0 by (4) and (5)

□

4 Least Fixed Point Semantics

We have used the fix operator to define the denotational semantics of while statements, and done
calculations relying on the fundamental property of fixed points, F (fix (F)) = fix (F). But we have
not not yet established that the relevant fixed point actually exists, nor have we explored how
undefined states (⊥) arise. We now address these issues.

The basic idea is that we can solve a recursive equation for a function by considering partial
unfoldings of the function, and taking their union. The actual recursive function will be the limit
we reach as the number of unfoldings goes to infinity. This limit is the least fixed point of the
functional corresponding to our recursive function.

Recall that the recursive equation we wish to solve has the form:

w(σ) = if b(σ) then w(c(σ)) else σ

where w = [[while b1 do c2]]c, b = [[b1]]b and c = [[c2]]c, and we are using “if-then-else” notation
as shorthand for the two cases in the mathematical definition of [[]]c on if commands. Our goal is
to show that a w satisfying this equation exists, and to give a way to compute it.

To attack this goal, it is very helpful to take a slightly alternative viewpoint on functions. Any
(total) function F : A → B can be viewed as a binary relation R ⊆ A × B, where (a, b) ∈ R iff
F (a) = b. A partial function F : A ⇀ B can be viewed as a relation R in the same way, where
R contains a pair for the form (a, b) only if F is defined on a. R is called the graph of F , which

8

we write R = ⌈F ⌉. Note that R is just a set of ordered pairs, with the property that no two pairs
in the set have the same first element (i.e., if (a, b1) ∈ R and (a, b2) ∈ R, then b1 = b2). In many
cases of interest, R will be an infinite set. It should be clear that two functions are equal (in the
sense of taking equal arguments to equal results) iff their graphs are equal (as sets); this is called
the extensionality principle.

Specializing to our situation here, recall that w is a total function from states Σ to “lifted states”
Σ⊥. Intuitively, ⊥ represents a state that is undefined, or, better, about which we have “no
information.” We can also view w as a partial function from Σ to Σ, which is considered to be
undefined on σ iff w(σ) = ⊥. We’ll find it convenient to write w as a total function, but to take
its graph to be that of the partial function, i.e. the graph is a relation on Σ × Σ that contains
(σ,w(σ′)) pairs only for those σ that w does not map to ⊥.

Since Σ is infinite (there are an infinite number of variable names, each of which might hold any
natural number), it should be clear that the graph of w is also infinite. It is often useful to build a
description of an infinite set in stages, by considering finite subsets. In the case of function w, we
will consider the subsets defined by allowing a fixed, finite number of unfoldings of the recursive
definition. Each of these allows us to define the behavior of w on a larger group of initial states.

Let’s start by considering a version of w that allows exactly one unfolding, i.e. we can see the right-
hand side, but we cannot compute a recursive application. If we try to compute such a call, we
arrange to get ⊥, representing “no information.” We can write this as as a non-recursive function:

w1(σ) = if b(σ) then
(λ .⊥)(c(σ))

else
σ

Note the use of λ .⊥ where the recursive call to w used to be: essentially, the result of c(σ) is ignored,
and this function simply returns “don’t know.” Think of w1 as a (not very good) approximation of
the full definition of w. It doesn’t say much, but it does allow us to compute the behavior of w on
initial states σ for which b(σ) is false. Indeed, the graph ⌈w1⌉ is the set {(σ, σ) | ¬b(σ)}, where we
use set comprehension notation which can be read as “the set of pairs of the form (σ, σ) such that
¬b(σ) holds (i.e. for which b(σ) = false).”

Now consider what happens if we allow exactly two unfoldings. We get:

w2(σ) = if b(σ) then
if b(c(σ)) then
(λ .⊥)(c(c(σ)))

else
c(σ)

else
σ

with graph ⌈w2⌉ = {(σ, σ) | ¬b(σ)} ∪ {(σ, c(σ)) | ¬b(c(σ)))}. Note that ⌈w1⌉ ⊆ ⌈w2⌉, i.e., w2 tells
us more about the behavior of w, while remaining consistent with what w1 already told us.

Obviously, this pattern can be repeated to define wi for any finite i. But these definitions, while
they remain finite and non-recursive, quickly grow unpleasantly large. Looking more closely at w2,
we see that it can be rewritten more concisely in terms of w1:

9

w2(σ) = if b(σ) then
w1(c(σ))

else
σ

By defining a suitable version of w corresponding to zero unfoldings (i.e. we cannot see the right
hand side at all) we can then write a general scheme defining wi for all natural numbers i.

w0(σ) = ⊥
wi+1(σ) = if b(σ) then

wi(c(σ))
else
σ

In terms of graphs, we have:

⌈w0⌉ = ∅
⌈wi+1⌉ = ⌈wi⌉ ∪ {(σ, ci(σ)) | ¬b(ci(σ)}

where ci is i-fold application of c, i.e. ci = c ◦ c ◦ · · · ◦ c, i times.

Now what we would like to to do is to define w as the function that combines the behavior of all
these partial definitions, i.e. a kind of limit as i approaches infinity. Mathematically, it is easiest
to express this in terms of the functions’ graphs, using the idea of an infinite union of sets. Take

W =

∞⋃
i=0

⌈wi⌉

Since each of the graphs in the union represents a partial function on states, it should be clear that
W does too; i.e. W = ⌈w⌉ for some function w : Σ → Σ⊥. This w is the desired solution to our
recursive equation. Using it will let us compute the state that results from executing any while

loop that iterates an arbitrary, finite number of times before b turns false. For an infinite loop,
w = w0, which has the empty graph, i.e. it will give ⊥ as the result state for any initial state.

What does this all this have to do with fixed points? Well, another way to write the partial versions
of w is to extract the (non-recursive) functional

F = λu.λσ.if b(σ) then u(c(σ)) else σ

and then write

w0 = λσ.⊥
wi+1 = F (wi)

= F i(w0)

where F i = F ◦ F ◦ · · · ◦ F , i times.

Thus we can write

⌈w⌉ = W =
∞⋃
i=0

⌈F (wi)⌉ =
∞⋃
i=0

⌈F i(w0)⌉

Then it turns out that w = fix (F), the least fixed point of F , where fixed point means that F (w) = w
and “least” means “being defined on the fewest states,” or, in graph terms, as “being the smallest

10

set.” We now proceed to prove this. As before, it is easiest to work with the graphs explicitly, and
show that ⌈F (w)⌉ = ⌈w⌉. We can state the effect of F on graphs of arbitrary functions u as

⌈F (u)⌉ = {(σ, σ′) | b(σ) ∧ (c(σ), σ′) ∈ ⌈u⌉} ∪ {(σ, σ) | ¬b(σ)} (8)

Theorem. w = fix (F), the least fixed point of F , i.e.

• ⌈w⌉ ⊆ ⌈F (w)⌉;

• ⌈F (w)⌉ ⊆ ⌈w⌉; and

• for any u such that ⌈F (u)⌉ = ⌈u⌉, ⌈w⌉ ⊆ ⌈u⌉.

Before proving the theorem, we first give a preliminary definition and lemma.

Definition. A function g is monotonic if, for any u, ⌈u⌉ ⊆ ⌈u′⌉ ⇒ ⌈g(u)⌉ ⊆ ⌈g(u′)⌉.
Lemma. F is monotonic.

Proof Assume ⌈u⌉ ⊆ ⌈u′⌉ and suppose (σ, σ′) ∈ ⌈F (u)⌉. Then by (8), there are two cases.
Case (i): b(σ) holds and (c(σ), σ′) ∈ ⌈u⌉. Then by the assumption, (c(σ), σ′) ∈ ⌈u′⌉, and by (8),
(σ, σ′) ∈ ⌈F (u′)⌉. Case (ii): σ = σ′ and ¬b(σ) holds. Then by (8), (σ, σ′) ∈ ⌈F (u′)⌉. □

Proof of Theorem

• ⌈w⌉ ⊆ ⌈F (w)⌉
For every i, it is immediate that ⌈wi⌉ ⊆

⋃∞
i=0⌈wi⌉ = ⌈w⌉, and so, by monotonicity, ⌈F (wi)⌉ ⊆

⌈F (w)⌉. Unioning over all i, we get ⌈w⌉ =
⋃∞

i=0⌈F (wi)⌉ ⊆ ⌈F (w)⌉ as required.

• ⌈F (w)⌉ ⊆ ⌈w⌉
Consider any (σ, σ′) ∈ ⌈F (w)⌉. By (8), there are two cases. Case (i): b(σ) holds and
(c(σ), σ′) ∈ ⌈w⌉ =

⋃∞
i=0⌈wi⌉. So there must be some (finite) n such that (c(σ), σ′) ∈ ⌈wn⌉.

So by (8) (σ, σ′) ∈ ⌈F (wn)⌉ ⊆
⋃∞

i=0⌈F (wi)⌉ = ⌈w⌉. Case (ii): σ = σ′ and ¬b(σ) holds. Then
(σ, σ′) ∈ ⌈w1⌉ = ⌈F (w0)⌉ ⊆

⋃∞
i=0⌈F (wi)⌉ = ⌈w⌉.

• For any u, ⌈F (u)⌉ = ⌈u⌉ ⇒ ⌈w⌉ ⊆ ⌈u⌉.
Let u be any function such that ⌈F (u)⌉ = ⌈u⌉. Then certainly ⌈w0⌉ = ∅ ⊆ ⌈u⌉. By
monotonicity, ⌈F (w0)⌉ ⊆ ⌈F (u)⌉ = ⌈u⌉. By induction, using monotonicity at each stage,
⌈F i(w0)⌉ ⊆ ⌈F (u)⌉ = ⌈u⌉ for every i. Unioning over all i, we get ⌈w⌉ =

⋃∞
i=0⌈F i(w0)⌉ ⊆ ⌈u⌉,

as required. □

With this proof in hand, we can now be confident that our semantics for IMP is well-defined, and
that the use of the fundemantal property of fix illustrated in, e.g. Example 2, is legitimate.

All this seems like quite a lot of work! So an obvious question is, do we have to do a similar proof
every time we want to use a recursive equation to denote the meaning of some language feature?
Fortunately, the answer is no: the result we got here can be obtained directly by instantiating a
much more general theory of fixed points. The classic approach works in the general setting of
pointed complete partial orders. Its theorems tell us that fix (F) =

⋃∞
i=0 F

i(∅) for a large class
of functions F . The only requirement is that F is continuous, a slightly stronger property than
being monotone (as defined above), which supports a proof along the lines of the second case of

11

our theorem above. In practice, almost any meaning function useful in denotational semantics will
be continuous, so there is no need to develop new theory to justify taking fixed points.

Exercise 3. Extend the IMP language with a command repeat c until b and specify its de-
notational semantics in the same style as for while, i.e., as the fixpoint of a suitable functional.
The intent is that [[repeat c until b]]c = [[c; while not b do c]]c. You do not have to prove
this equivalence, but you do need to prove that the fixpoint of your functional exists. Hint: just
follow the outline of the theorem proof above; only places that appeal to equation (8) need to be
re-argued.

Notes

For a (relatively) gentle introduction to the mathematical details of fixed point theory, see Schmidt
[1986, Ch. 6] or Winskel [1993].

David A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and
Bacon, 1986. URL https://people.cs.ksu.edu/~schmidt/text/ds0122.pdf.

Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
1993.

5 Suggested Solutions To Exercises

1. Small-step semantics for IMP.

Arithmetic (numeric values nv are as in TAPL Ch.3):

σ(x) = v

x | σ →a v
(E-Var)

a | σ →a a
′

succ a | σ →a succ a′
(E-Succ)

pred 0 | σ →a 0 (E-PredZero)

pred (succ nv) | σ →a nv (E-PredSucc)

a | σ →a a
′

pred a | σ →a pred a′
(E-Pred)

Booleans:

not true | σ →b false (E-NotTrue)

not false | σ →b true (E-NotFalse)

b | σ →b b
′

not b | σ →b not b′
(E-Not)

12

iszero 0 | σ →b true (E-IszeroZero)

iszero (succ nv) | σ →b false (E-IszeroSucc)

a | σ →a a
′

iszero a | σ →b iszero a′
(E-Iszero)

Commands:

Note that skip is a normal form; if we reach it by a sequence of steps, this indicates normal
successful evaluation (analogous to reaching a value in small-step semantics of expressions).

a | σ →a a
′

x := a | σ →c x := a′ | σ
(E-Assign)

x := nv | σ →c skip | [x 7→ nv]σ (E-AssignVal)

c1 | σ →c c
′
1 | σ′

c1; c2 | σ →c c
′
1; c2 | σ′ (E-Seq1)

skip; c2 | σ →c c2 | σ (E-SeqSkip)

b1 | σ →b b
′
1

if b1 then c2 else c3 | σ →c if b′1 then c2 else c3 | σ
(E-If)

if true then c2 else c3 | σ →c c2 | σ (E-IfTrue)

if false then c2 else c3 | σ →c c3 | σ (E-IfFalse)

while b1 do c2 | σ →c if b1 then (c2; while b1 do c2) else skip | σ (E-While)

2. We want to show that [[l]]c = [[r]]c, where we have defined these shorthands:

l = x := 0; c
c = if iszero y then x := y else y := x

r = x := 0; y := 0

To do this, we must show that [[l]]c(σ0) = [[r]]c(σ0) for an arbitrary initial state σ0.

In addition to properties (3), (4), and (5), we will need two further generic properties about state
update:

([x 7→ n]σ)(y) = σ(y) if x and y are different variables (9)

([y 7→ n2]([x 7→ n1]σ) = [x 7→ n1]([y 7→ n2]σ) if x and y are different variables (10)

First, note that for any σ and any variable v,

[[v := 0]]c(σ) = [v 7→ [[0]]a(σ)]σ = [v 7→ 0]σ (11)

13

Then on the right hand side we have

[[r]]c(σ0) = ([[y := 0]]c ◦⊥ [[x := 0]]c)(σ0)

= [y 7→ 0]([x 7→ 0]σ0)
(12)

On the left hand side we have

[[l]]c(σ0) = [[x := 0; c]]c(σ0)

= ([[c]]c ◦⊥ [[x := 0]]c)(σ0)

= [[c]]c([x 7→ 0]σ0) by (11)

= [[c]]c(σ1) where σ1 = [x 7→ 0]σ0

= if [[iszero y]]b(σ1) then [[x := y]]c(σ1) else [[y := x]]c(σ1)

= if σ1(y) = 0 then [x 7→ σ1(y)]σ1 else [y 7→ σ1(x)]σ1

where the “if-then-else” notation is just shorthand for the two cases in the mathematical definition
of [[]]c on if commands.

Now, to continue the calculation, we separately consider two cases for the initial value of y:

• σ0(y) = 0.

Then, by (9), σ1(y) = 0 as well. So

[[l]]c(σ0) = . . .

= if σ1(y) = 0 then [x 7→ σ1(y)]σ1 else [y 7→ σ1(x)]σ1

= [x 7→ 0]σ1 by (4)

= [x 7→ 0]σ0

= [x 7→ 0]([y 7→ 0]σ0) by (5)

= [y 7→ 0]([x 7→ 0]σ0) by (10)

= [[r]]c(σ0) by (12)

• σ0(y) ̸= 0.

Then, by (9), σ1(y) ̸= 0 as well. So

[[l]]c(σ0) = . . .

= if σ1(y) = 0 then [x 7→ σ1(y)]σ1 else [y 7→ σ1(x)]σ1

= [y 7→ σ1(x)]σ1 by (3)

= [y 7→ 0]σ1

= [y 7→ 0]([x 7→ 0]σ0)

= [[l]]cσ0 by (12)

□

3. To handle repeat in the same style as while, we need to start with a recursive equality analogous
to the one on page 6, namely:

[[repeat c1 until b2]]c = [[c1; if b2 then skip else repeat c1 until b2]]c

14

Unfolding the denotation function on the right hand side, and writing r for [[repeat c1 until b2]]c,
b for [[b2]]c and c for [[c1]]c, we get

r(σ) = if b(c(σ)) then c(σ) else r(c(σ))

The solution to this recursive equation is fix (G), the least-fixed point of the functional G given by

G = λuλσ.if b(c(σ)) then c(σ) else u(c(σ))

The corresponding function on graphs, analogous to (8), is given by

⌈G(u)⌉ = {(σ, c(σ)) | b(c(σ))} ∪ {(σ, σ′) | ¬b(c(σ)) ∧ (c(σ), σ′) ∈ ⌈u⌉} (8′)

The approximations to r are given by

r0 = λσ.⊥
ri+1 = G(ri)

= Gi(r0)

where Gi = G ◦G ◦ · · · ◦G, i times.

Analogous to the while case, we claim that fix (G) is given by

⌈r⌉ = R =
∞⋃
i=0

⌈G(ri)⌉ =
∞⋃
i=0

⌈Gi(r0)⌉

To show that this least fixed point exists, we must reprove the p. 11 Theorem for r and G in place
of w and F .

The only potential changes required to the proof are the places that mention (8); we must now
make sure that they also work for (8′). First, we must prove

Lemma. G is monotonic.

Proof Assume ⌈u⌉ ⊆ ⌈u′⌉ and suppose (σ, σ′) ∈ ⌈G(u)⌉. Then by (8′), there are two cases. Case
(i): σ′ = c(σ) and b(c(σ)) holds. Then, by (8′), (σ, σ′) ∈ ⌈G(u′)⌉ too. Case (ii): ¬b(c(σ)) holds and
(c(σ), σ′) ∈ ⌈u⌉. Then by the assumption, (c(σ), σ′) ∈ ⌈u′⌉, and by (8′), (σ, σ′) ∈ ⌈F (u′)⌉. □

Second, we must prove that ⌈G(r)⌉ ⊆ ⌈r⌉.
Consider any (σ, σ′) ∈ ⌈G(r)⌉. By (8′), there are two cases. Case (i): σ′ = c(σ) and b(c(σ))
holds. Then (σ, σ′) ∈ ⌈r1⌉ = ⌈G(r0)⌉ ⊆

⋃∞
i=0⌈G(ri)⌉ = ⌈r⌉. Case (ii): ¬b(c(σ)) holds and

(c(σ), σ′) ∈ ⌈r⌉ =
⋃∞

i=0⌈ri⌉. So there must be some (finite) n such that (c(σ), σ′) ∈ ⌈rn⌉. So by
(8′), (σ, σ′) ∈ ⌈G(rn)⌉ ⊆

⋃∞
i=0⌈G(ri)⌉ = ⌈r⌉. □

15

