
CS577 Sp’05 Lecture Notes
Lecture 14

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 2

Basic Garbage Collection

Garbage Collection (GC)is the automatic reclamation of heap
records that will never again be accessed by the program.

GC is universally used for languages with closures and complex
data structures that areimplicitly heap-allocated.

GC may be useful for any language that supports heap allocation,
because it obviates the need for explicit deallocation, which is
tedious, error-prone, and often non-modular.

GC technology is increasingly interesting for “conventional”
language implementation, especially as users discover that free
isn’t free. I.e., explicit memory management can be costly too.

We view GC as part of anallocation serviceprovided by the
runtime environment to the user program, usually called the
mutator . When the mutator needs heap space, it calls an
allocation routine, which in turn performs garbage collection
activities if needed.

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 3

Simple Heap Model

For simplicity, consider a heap containing “cons” cells.

HEAPSTACK

GLOBALS

Heap consists oftwo-word cells and each element of a cell is a
pointer to another cell. (We’ll deal with distinguishing pointers
from non-pointers later.)

There may also be pointers into the heap from the stack and
global variables; these constitute theroot set.

At any given moment, the system’slive data are the heap cells
that can be reached bysomeseries of pointer traversals starting
from a member of the root set.

Garbage is the heap memory containing non-live cells. (Note
that this is a slightly conservative definition.)

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 4

Reference Counting

The most straightforward way to recognize garbage and make its
space reusable for new cells is to usereference counts.

We augment each heap cell with acount field that records the
total number of pointers in the system that point to the cell.Each
time we create or copy a pointer to the cell, we increment the
count; each time we destroy a pointer, we decrement the count.

If the reference count ever goes to 0, we can reuse the cell by
placing it on afree list.

FREE
LIST

When allocating a new cell, we first try the free list (before
extending the heap).

Pros:
Conceptually simple;
Immediate reclamation of storage

Cons:
Extra space;
Extra time (every pointer assignment has to change/check count)
Can’t collect “cyclic garbage”

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 5

Mark and Sweep

There’s no real need to remove garbage as long as unused
memory is available. So GC is typically deferred until the
allocator fails due to lack of memory. The collector then takes
control of the processor, performs a collection—hopefully
freeing enough memory to satisfy the allocation request—and
returns control to the mutator. This approach is known
generically as “stop and collect.”

There are several options for the collection algorithm. Perhaps
the simplest is calledmark and sweep, which operates in two
phases:

• First,mark each live data cell by tracing all pointers starting
with the root set.

• Then,sweepall unmarked cells onto the free list (also
unmarking the marked cells).

struct cell {
int mark:1;
struct cell *c[2];}

struct cell *free;

struct cell heap[HEAPSIZE];

struct cell *roots[ROOTS];

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 6

/* Initially all cells are on free list.
Use c[0] to link members of free list. */

void init_heap() {
for (i=0; i < HEAPSIZE-1; i++)

heap[i].c[0] = &(heap[i+1]);
heap[HEAPSIZE-1].c[0] = 0;
free = &(heap[0]);

}

struct cell *allocate() {
struct cell *a;
if (!free) { /* no more room => */

gc(); /* try gc */
if (!free) /* still no more room */
die();

};
a = free;
free = free->c[0];
return a;

}

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 7

void gc() {
for (i = 0; i < ROOTS; i++)

mark(roots[i]);
sweep();

}

void mark(struct cell *cell) {
if (!cell->mark) {

cell->mark = 1;
mark(cell->c[0]);
mark(cell->c[1]);

}
}

void sweep() {
for (i = 0; i < HEAPSIZE; i++)

if (heap[i].mark)
heap[i].mark = 0;

else {
heap[i].c[0] = free;
free = &(heap[i]);

}
}

Heremark traverses the live data graph in depth-first order, and
potentially useslots of stack! A standard trick calledpointer
reversal can be used to avoid needing extra space during the
traversal.

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 8

Copying Collection

Mark and sweep has several problems:

• It does work proportional to the size of the entire heap.

• It leaves memory fragmented.

• It doesn’t cope well with non-uniform cell sizes.

An alternative that solves these problems iscopying collection.
The idea is to divide the available heap into 2semi-spaces.
Initially, the allocator uses just one space; when it fills up, the
collectorcopiesthe live data (only) into the other space, and
reverses the role of the spaces.

ALLOCATION SPACERESERVE SPACE

ALLOCATION SPACE RESERVE SPACE

DATA

DATA & GARBAGE

DATA

START OF CYCLE:

BEFORE COLLECTION:

AFTER COLLECTION:

ALLOCATION SPACE RESERVE SPACE

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 9

Copying collection must fix upall pointers to copied data. To do
this, it leaves aforwarding pointer in the “from” space after the
copy is made.

A copying collector typically traverses the live data graph
breadth first , using “to” space itself as the search “queue.”

Copyingcompactslive data, which improves locality and may
be good for virtual memory and caches.

FROM SPACE TO SPACEROOT SET

FROM SPACE TO SPACEROOT SET

BEFORE COLLECTION

AFTER COLLECTION

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 10

Copying Collection Details

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

FS

S F

FS

F

F

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S
A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S

TO-SPACE

GRAPH

Root
Set

B

E
A

DC

FS

S = scan pointer F = free pointer

= copied but not scanned

= copied and scanned
(all pointers are to
 to-space)

F

S

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 11

struct cell {
struct cell *c[2];

}

struct cell space[2][HALFSIZE];

struct cell *roots[ROOTS];

struct cell *free = &(space[0][0]);
struct cell *end = &(space[0][HALFSIZE]);

int from_space = 0;
int to_space = 1;

struct cell *allocate() {
if (free == end) { /* no room */

gc();
if (free == end) /* still no room */
die();

};
return free++;

}

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 12

gc() {
int i;
struct cell *scan = &(space[to_space][0]);
free = scan;
for (i = 0 ; i < ROOTS; i++)

roots[i] = forward(roots[i]);
while (scan < free) {

scan->c[0] = forward(scan->c[0]);
scan->c[1] = forward(scan->c[1]);
scan++;

};
from_space = 1-from_space;
to_space = 1-to_space;
end = *(space[from_space][HALFSIZE]);

}

struct cell *forward(struct cell *p) {
if (p >=&(space[from_space][0]) &&

p < &(space[from_space][HALFSIZE]))
if (p->c[0] >= &(space[to_space][0]) &&

p->c[0] < &(space[to_space][HALFSIZE]))
return p->c[0];

else {
*free = *p;
p->c[0] = free++;
return p->c[0];

}
else return p;

}

PSU CS577 Sp’05 Lecture 14c© Andrew Tolmach 2005 13

Comparison

Copying collector does work proportional to amount oflive data.
Asymptotically, this means it does less work than mark and
sweep. Let

A = amount of live data
M = total memory size before a collection.

After the collection, there is M-A space left for allocationbefore
the next collection. We can calculate theamortized costper
allocated byte as follows:

CM&S =
c1A+c2M

M−A
for somec1, c2

CCOPY =
c3A

M
2
−A

for somec3

As M → ∞, CCOPY → 0, while CM&S → c2.

Of course, real memories aren’t infinite, so the values ofc1, c2, c3

matter, especially if a significant percentage of data are live at
collection (since generallyc3 > c1).

