
CS 577 Homework 2 – Improving a Just-in-time compiler – due 4pm, Monday, May 23, 2005

On the course web page, you’ll find C code for a just-in-time compiler handling a small subset
of JVM instructions. The Java subset supported includes integer arithmetic, integer arrays, static
methods, and a minimal set of output facilities, just as in (the solution to) Homework 1. Also, pro-
grams are restricted to 6 local variables and a maximum stacksize of 8. The compiler is defined by
a set of C files (compile.c,class.[ch],basics.[ch],bytecode.h,param size.h,
stack size change.h), and amakefile, which generates an executablejit. This can be
invoked just like the usualjava interpreter on a single class file, but fails on programs outside the
supported subset. Before executing the generated code, thejit displays it on standard error.

Your assignment is to improvejit so that it doesn’t have to generate instructions for loadingthe
stack from local variables, storing from the stack to local variables, duplicating stack elements,
or swapping stack elements. (You may need to introduce compensating register-register move
instructions at join points which the currentjit doesn’t require; such extra instructions don’t
count.)

For extra credit (but mainly just for fun), you can further improvejit to avoid generating in-
structions for loading small constants onto the stack. (This is fairly straightforward, but the details
are rather complicated.) You can also try to avoid the compensating move instructions mentioned
above, do a better job of filling delay slots, handle spills properly, etc.

Details

The providedjit takes a very naive approach to register allocation: local variables 0 through 5
are always stored in SPARC registers%i0 through%i5, and stack slots 0 through 7 are always
stored in%l0 through%l7. (For more details on SPARC register conventions, and for other
facts about the SPARC architecture, see the architecture manual athttp://www.sparc.com/
standards/V8.pdf.) To determine which stack slots are accessed by a given instruction, it is
necessary to keep track of the stack size at each program point, which is guaranteed by the JVM
specification to be uniquely defined for any verified program.The providedjit computes and
stores stack sizes by taking a preliminary pass over the code, in execution order. (Note that such
calculations cannot in general be performed in simple orderof increasing pc, because following
an unconditional GOTO, the stack size may be unknown.) A morerealistic implementation would
handle more than 6 locals or 8 stack slots by spilling registers to memory when necessary, but we’ll
ignore this issue here.

The main disadvantage of this approach is that it generates aregister-register move instruction for
each load or store between the stack and a local variable. An alternative approach is to maintain
a flexible assignment from stack slots and locals to registers; when a load or store occurs, the
assignment is updated but data aren’t actually moved. For example, given the Java Function

static void foo(int a)
int b = 20;
int c = (a - b) * (b - a);
a = b + c;

here’s what we’d like to generate:

1



BYTE CODE SPARC CODE EMITTED STATE
static void foo(int);
Code: save %o6,-96,%o6 v0:%i0 v1:%i1 v2:%i2
0: bipush 20 or %g0,20,%i3 s0:%i3 v0:%i0 v1:%i1 v2:%i2
2: istore_1 v0:%i0 v1:%i3 v2:%i2
3: iload_0 s0:%i0 v0:%i0 v1:%i3 v2:%i2
4: iload_1 s1:%i3 s0:%i0 v0:%i0 v1:%i3 v2:%i2
5: isub sub %i0,%i3,%i1 s0:%i1 v0:%i0 v1:%i3 v2:%i2
6: iload_1 s1:%i3 s0:%i1 v0:%i0 v1:%i3 v2:%i2
7: iload_0 s2:%i0 s1:%i3 s0:%i1

v0:%i0 v1:%i3 v2:%i2
8: isub sub %i3,%i0,%i4 s1:%i4 s0:%i1 v0:%i0 v1:%i3 v2:%i2
9: imul smul %i1,%i4,%i4 s0:%i4 v0:%i0 v1:%i3 v2:%i2
10: istore_2 v0:%i0 v1:%i3 v2:%i4
11: iload_1 s0:%i3 v0:%i0 v1:%i3 v2:%i4
12: iload_2 s1:%i4 s0:%i3 v0:%i0 v1:%i3 v2:%i4
13: iadd add %i3,%i4,%i1 s0:%i1 v0:%i0 v1:%i3 v2:%i4
14: istore_0 v0:%i1 v1:%i3 v2:%i4
15: return jmpl %i7,8,%g0

restore %g0,%g0,%g0

To implement this approach, the register state could be maintained in a structure something like
this:

typedef struct
int size; // stack size (always <= method->max_stack)
reg stack[MAX_STACK]; // stack registers (valid for [0..size-1])
reg var[MAX_LOCALS]; // var registers (valid for [0..method->max_locals-1])
State;

Stack operations work on the registers recorded in the state; any operation that produces a new
value puts it in an otherwise unused register. For example,IADD is processed by something like:

state.size -=2;
reg target = get_reg(state);
EMIT(gen_op(ADD_OP,target,state.stack[state.size],state.stack[state.size+1]);
state.stack[state.size] = target;
state.size++;

Here we assumeget reg(state) returns a register that is unused instate. An instruction
like ILOAD 0 is processed just by changing the state:

state.stack[state.size++] = state.var[0];

andISTORE 0 would be processed by:

state.var[0] = state.stack[--state.size];

2



The main complication with this approach is that different basic blocks will typically get different
ideas about where the variables and stack slots live. These different states must bereconciled
at any control flow join point. The most straightforward way to do this is to issue a series of
register-register moves to make one state match the other. You’ll potentially need to perform
reconciliation before any jump, and also whenever control “falls through” to an instruction that is
itself a jump target. To see whether reconciliation is necessary, and figure out what to move, you
can simply compare the stateafter the execution of the earlier instruction to the desired statebefore
the execution of the next one.

The most straightforward way to modify the existingjit for this approach is to augment the pre-
liminary pass over the program to compute complete states rather than just stack sizes. You may
find it convenient to compute and store states both before andafter each instruction, to aid in rec-
onciliation. Then use the computed state information whileemiting instructions during the second
pass. (If you follow this approach, the code given forIADD above will be split into two parts: in
the first pass, the target register will be chosen and the stack size adjusted; in the second pass, the
corresponding state information will be read to generate the arguments toEMIT.) Alternatively,
you can compute state information and emit code on the same pass; this is simpler in some ways,
but may require you to alter the control flow of the method in some cases in order that you always
know the state before you start emitting code.

How to submit your homework.

Submit the homeworkby email prior to the beginning of class on the due date. You should submit
the following items asattachments to your mail:

• Your modified version ofjit.c.

• A brief explanation (in plain text) of how reconciliation isrelated to the conversion of SSA
back to ordinary 3-address code (see textbook Section 9.3.5).

3


