
CS577 W’04 Lecture Notes
Lecture 11



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 2

Conservative Collection

Standard GC algorithms rely on precise identification of pointers.

This is hard in “uncooperative” environments, i.e., when the
mutator (and its compiler) are not aware that GC will be
performed. This is the normal case for C/C++ programs.

(Hence also an issue for portable Java implementations based on
C, and for native functions.)

Basic problem: the mutator and collector can no longer
communicate a root set.

(Also hard if mutator isn’t sure about roots. E.g., for JVM stack
must know statically which entries are pointers – easy except for
subroutines.)

Idea: for any scanning collector to be correct, it’s essential that
every pointer be found. But for non-moving collectors, it’s ok to
mistake a non-pointer for a pointer – the worst that happens is
that some garbage doesn’t get collected.

Conservative collectors scan the entire register set and stack of
the mutator, and assume that anything that might be a pointer
really is a pointer.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 3

Issues in Conservative Collection

• Some bit patterns that are actually integers, reals, chars, etc.
will be mistaken for pointers, so the “records” they “point” to
will be treated as live data, causing space leaks.

• Accidental pointer identifications can be greatly decreased by
careful tests, e.g., must be on a page known to be in the heap, at
an appropriate alignment for objects on that page; data at
“pointed-to” location must look like a heap header.

• Can further reduce false id’s by not allocating on pages whose
addresses correspond to data values known to be in use.

Major problems:

• Because they must filter large numbers of potential roots,
conservative collectors tend to be slow.

• Collector must still be able to find all potential roots in
registers and stack frames.

• Pointers must not be kept in “hidden” form by mutator code
that does weird pointer arithmetic.

See widely-used Boehm-Demers-Weiser collector:

http://www.hpl.hp.com/personal/Hans Boehm/gc/index.html



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 4

Object Lifetimes

Major problem with tracing GC: long-lived data get traced
(scanned and/or copied) repeatedly, without producing free
space.

(Weak) Generational Hypothesis: “Most data die young.”

I.e., most records become garbage a short time after they are
allocated.

If we equate “age” of an object O is equated with amount of heap
allocated since O was allocated, this says that most records
become garbage after a small number of other records have been
allocated.

Moreover, the longer an object stays live, the more likely it is to
remain live in the future.

These are empirical properties of many (not necessarily all)
languages/programs.

Implication : if you’re looking for garbage, it’s more likely to be
found in recently-allocated data, e.g., in data allocated since the
last garbage collection.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 5

Generational Collection

Idea: Segregate data by age into generations.

• Arrange that the younger generations can be collected
independently of the older ones.

• When space is needed, collect the youngest generation first.

• Only collect older generation(s) if space is still needed.

• Should make GC more efficient overall, since less total tracing
is performed.

• Should shorten pause times (at least for young generation
GCs).

Some variant of generational collection is almost universally
used in serious implementations of heavily-allocating languages
(LISP, functional languages, Smalltalk, ...)

Most generational systems are copying collectors, although mark
and sweep variants are possible.

In generational copying collector, data in generation n that are
still live after a certain number of gc’s (the promotion
threshold) are copied into generation n + 1 (possibly triggering
a collection there).

Key problem: finding all the roots that point into generation n

without scanning higher generations.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 6

Example

Assume 2 generations, promotion threshold = 1. Initial memory
configuration after allocation of R:

S

OLD GENERATION

B

A

Q

PR

0 0

NEW GENERATION ROOTS

Suppose a GC is now needed:

S

R

A

B

00

ROOTSNEW GENERATIONOLD GENERATION

Note that S is now tenured (uncollected garbage).



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 7

Example (continued)

Now we allocate a new cell T pointed to by R, fill T with pointers
to A and B, and zero the root set pointers to A and B.

S

R

A

B

T
 

0

OLD GENERATION NEW GENERATION

0

0

ROOTS

If a further GC is needed, we must follow the inter-generational
pointer from R to T.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 8

Design issues

Tracking pointers from older generations to younger ones.

• This is primary added cost of generational system.

• Can only happen via update of a pointer in an older generation.

• Typically use a write barrier to catch such updates.

• Maintain remembered set of updated memory chunks
(“cards”), where chunk size can range from single address to
entire page.

• Hope there are not too many!

• Different tradeoffs in mutator overhead vs. scan time.

Promotion policy?

• Threshold = 1 gives simpler implementation, since no need to
record object age, but promotes very young objects.

How many generations?

• Two-generation systems give simpler implementation, but
multiple generations are useful if there is a spread of object
lifetimes (especially if threshold = 1).

May want separate areas for large, pointer-free, or “immortal”
objects.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 9

Incremental/Concurrent Collectors

Stop-and-copy collectors suffer from arbitrarily long pauses
during collection, which is bad for interactive applications.

Incremental collectors attempt to solve this problem by doing
the collection in small pieces, no one of which takes too long.
Typically do some collection work at the time of each allocation.
E.g., every time a cell is allocated, collector traces k cells (for
some k >

A

M−A
). Note: incremental 6= real-time.

Because collector and mutator are interleaved at fine granularity,
they must synchronize their activities. Useful to view collector
and mutator as concurrent threads. In fact, can usually make
incremental GC algorithms run on a multiprocessor, with one or
more threads devoted to doing GC.

(Reference counting is essentially a concurrent GC approach.)

Key problem: mutator can change set of live cells “under the feet”
of the collector. Example:

Mutator Collector
q = new
r = new
p = q

trace p; mark q live
p = r

trace q... (ignore r)

Essential not to treat live data as garbage. Desirable not to treat
garbage as live data.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 10

Tricolor Invariant

To describe essential invariant for concurrent marking, think of
each heap cell as having one of three colors:

Black - node and its immediate children have been visited
already.

Grey - node has been visited, but its children might not have
been, so collector must revisit this node.

White - node has not been visited yet.

Initially, all nodes are white. A scan cycle terminates when all
reachable nodes are black and there are no grey nodes; at this
point, all remaining white nodes are garbage.

Example: In copying collector, old-space nodes are white,
new-space nodes are grey until scanned, after which they become
black.

Key idea: To maintain correctness of scan, mutatator must never
write a pointer directly from a black node to a white node.

Many different ways to enforce this invariant.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 11

Baker’s Algorithm (Incremental Copying Collector)

Idea: Never let the mutator “see” a white node (i.e., an old-space
pointer). That way, mutator can never write such a pointer into a
black node (i.e., a new-space node).

Implementation requires a read barrier that traps attempts to
load from old-space cells, and moves them to new-space “on the
fly.”

Original mutator code:

x = p->c[1];

New mutator code after insertion of read barrier:

x = (forward(p))->c[1];

Also arranges to allocate new cells in new-space, beyond scan
boundary (i.e., colored black); this is quite conservative, but safe
and simple.

Read barrier makes this algorithm very expensive in the absence
of hardware support. One possible variant: use memory
management hardware to implement read barrier at page level.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 12

Dijkstra’s Algorithm (Incremental Mark-Sweep Collector)

In a M&S collector, often use an explicit mark stack to record
nodes that have been marked but whose children have not been:

struct cell *markstack[];
int msp = 0;
void gc () {
for (int i = 0; i < ROOTS; i++) {

roots[i]->mark = 1;
markstack[msp++] = roots[i];

}
while (struct cell *cell = markstack[--msp])

for (int child = 0; child <= 1; child++)
if (!cell->c[child]->mark) {

cell->c[child]->mark = 1;
markstack[msp++] = cell->c[child];

}
sweep();

}

In this context, unmarked cells are white, marked cells that are
on the markstack are grey, and other marked cells are black.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 13

Incremental Mark-Sweep (cont.)

The most direct way to prevent a black-to-white pointer from
being written is to use a write barrier to detect such writes, and
change the target object’s color to grey “on the fly.”

Original mutator code:

*p = q;

Mutator code with write barrier:

*p = q;
if (!q->mark) {

q->mark = 1;
markstack[msp++] = q;

}



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 14

Garbage Collection in Java

Sun’s original JVM uses a “mark and compact” collector

• Compromise between M&S and copying collectors.

• Live data cells are marked.

• Then heap is scanned and live data are slid down to a compact
region at the bottom of the heap.

• Extra space costs for forwarding pointers; extra time costs for
added traversals.

• Object pointers actually point to a handle which in turn points
to the real object data. Handles are allocated in their own space,
managed by M&S, and never moved. Object data records can be
moved just by changing the handle’s contents, without altering
the object pointer.

Using handles supports conservative collection, which is handy
because of bytecode subroutines and native code, but usually
unnecessary.



PSU CS577 W’04 Lecture 11 c© Andrew Tolmach 2004 15

Garbage Collection and Native Code under Java

Interfacing to native code is problematic:

Java objects referenced by native code must not be collected by
Java GC until native code is done with them.

Solutions:

• GC can implicitly register all arguments passed to native code
(or returned to native code by callbacks into Java), and not
collect them until native code finishes.
• References that need to live longer must be explicitly registered
(and later unregistered) by native code programmer.

Java objects referenced directly by native code can’t be moved.

Solutions:

• Use non-moving collector.
• Pass unmoveable, indirect object references to native code.
• Pin objects passed to native code.
• Make pinned copies of objects passed to native code.

Native code data objects pointed to by Java objects that get
GC’ed should be freed.

Solution:

• Use finalization routines.


