When do two identifiers have the “same” type, or “compatible” types? We need to know this to do static type checking.

- e.g., if \( x \) has type \( t_1 \) and \( e \) has type \( t_2 \), when does it make sense to allow the assignment \( x := e \)?

To maintain \textbf{type safety} we must insist at a minimum that \( t_1 \) and \( t_2 \) are \textbf{structurally equivalent}.

- Two types are structurally equivalent if they each describe the same set of values.

In languages that define type \textbf{names}, we may instead require that \( t_1 \) and \( t_2 \) be \textbf{name-equivalent}.

- Two types are name-equivalent if they have identical names.
- Name equivalence implies structural equivalence, but not vice-versa.

In some languages, values can be given more than one type due to \textbf{subtyping}, which can also be defined using \textbf{structural} or \textbf{nominal} criteria. Then we insist that \( t_2 \) be a subtype of \( t_1 \).
Structural equivalence is defined inductively:

- Primitive types are equivalent iff they are exactly the same type.
- Cartesian product types are equivalent if their corresponding component types are equivalent. (Record field names may or may not matter.)
- Disjoint union types are equivalent if their corresponding component types are equivalent.
- Mapping types (arrays and functions) are the same if their domain and range types are the same.
- Recursive types are a challenge. Are these two types structurally equivalent?

```
  type t1 = { a:int, b: POINTER TO t1 };  
  type t2 = { a:int, b: POINTER TO t2 };  
```

Intuitively yes, but it’s (a little) tricky for a type-checking algorithm to determine this!
Question of equivalence is more interesting if language has type \textbf{names}, which arise for two main reasons:

- As a convenient shorthand to avoid giving the full type each time, e.g.

  ```plaintext
  function f(x:int * bool * real) : int * bool * real = ...
  type t = int * bool * real
  function f(x:t) : t = ...
  ```

- As a way of improving program correctness by subdividing values into types according to their meaning \textbf{within the program}, e.g.

  ```plaintext
  type polar = { r:real, a:real }
  type rect = { x:real, y:real }
  function polar_add(x:polar,y:polar) : polar = ...
  function rect_add(x:rect,y:rect) : rect = ...
  var a:polar; c:rect;
  a := (150.0,30.0) (* ok *)
  polar_add(a,a) (* ok *)
  c := a (* type error *)
  rect_add(a,c) (* type error *)
  ```

Whole idea here is that some structurally equivalent are treated as \textbf{inequivalent}. 
Simplistic idea: Two types are equivalent iff they have the same name.

Supports polar/rect distinction.

But pure name equivalence is very restrictive, e.g.:

```plaintext
type ftemp = real
type ctemp = real
var x:ftemp, y:ftemp, z: ctemp;
x := y; (* ok *)
x := 10.0; (* probably ok *)
x := z; (* type error *)
x := 1.8 * z + 32.0; (* probably type error *)
```

Different types now seem too distinct; can’t even convert from one form of real to another.
Also: what about unnamed type expressions?

```
type t = int * int
procedure f(x: int * int) = ...
procedure g(x: t) = ...
var a:t = (3,4)
g(a); (* ok *)
f(a); (* ok or not ?? *)
```

Because of these problems with pure name equivalence, most languages use **mixed** solutions.
C uses structural equivalence for array and function types, but name equivalence for struct, union, and enum types. For example:

```c
char a[100];
void f(char b[]);
f(a); /* ok */

struct polar{float x; float y;};
struct rect{float x; float y;};
struct polar a;
struct rect b;
a = b; /* type error */
```

A type defined by a typedef declaration is just an abbreviation for an existing type.

Note that this policy makes it easy to check equivalence of recursive types, which can only be built using structs.

```c
struct fred {int x; struct fred *y;} a;
struct bill {int x; struct fred *y;} b;
a = b; /* type error */
```
ML uses structural equivalence, except that each `datatype` declaration creates a new type unlike all others.

```ml
datatype polar = POLAR of real * real
datatype rect = RECT of real * real
val a = POLAR(1.0,2.0) and b = RECT(1.0,2.0)
if (a = b) ... (* type error *)
```

Note that the mandatory use of constructors makes it possible to uniquely identify the types of literals.

Note that a `datatype` need not declare a record:

```ml
datatype fahrenheit = F of real
datatype celsius = C of real
val a = F 150.0 and b = C 150.0
if (a = b) ... (* type error *)
fun convert(F x) = C(1.8 * x + 32.0) (* ok *)
```

For type abbreviation, ML offers the `type` declaration, which simply gives a new name for an existing type.

```ml
type centigrade = celsius
fun g(x:centigrade) = if x = b ... (* ok *)
```
Java uses nearly strict name equivalence, where names are either:

- One of eight built-in **primitive** types (int, float, boolean, etc.), or
- Declared classes or interfaces (**reference** types).

The only non-trivial type expressions that can appear in a source program are **array** types, which are compared structurally, using name equivalence for the ultimate element type. Java has no mechanism for type abbreviations.

Java types form a **subtyping** hierarchy:

- If class A extends class B, then A is a subtype of B.
- If class A implements interface I, then A is a subtype of I.
- If numeric type t can be coerced to numeric type u without loss of precision, then t is a subtype of u.

If $T_1$ is a subtype of $T_2$, then a value of type $T_1$ can be used wherever a value of $T_2$ is expected.