G**RAMMARS**

- Used for description, parsing, analysis, etc.
- Based on *recursive* definition of program structure.
- Rich theory with connections to automatic parser generation, push-down automata, etc.
- Many possible representations, including **BNF** (Backus-Naur Form), **EBNF** (Extended BNF), syntax charts, etc.

SIMPE**LE EXAMPLE GRAMMAR**

<table>
<thead>
<tr>
<th>Character set: { (,) }</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminals: { (,) }</td>
</tr>
<tr>
<td>Nonterminals: { S }</td>
</tr>
</tbody>
</table>

Productions:
- \(S ::= (S) \)
- \(S ::= SS \)
- \(S ::= \epsilon \) (the empty string)

Starting nonterminal: \(S \)

Sample derivation:
\[
S \rightarrow (S) \rightarrow (SS) \rightarrow ((S)S) \rightarrow (()S) \rightarrow (() (S)) \rightarrow (() ())
\]

This grammar generates the language of strings of properly matched parentheses.

It is often useful to think of a derivation as a **tree** (more shortly).

GRAMMARS F**ORMALLY**

A **(context-free) Grammar** over a given **character set** consists of:
- A set of **terminals**, which are strings of zero or more characters.
- A set of **nonterminals**, which are variables representing a set of terminals.
- A set of **productions**, each of which has a **left side** consisting of a single nonterminal and a **right side** consisting of zero or more terminals or nonterminals.
- A distinguished **starting nonterminal**.

We can **apply** a production to a string by replacing some instance of the left side nonterminal by the right side.

The **context-free language** \(L(G) \) generated by a grammar \(G \) is the set of character strings that can be **derived** from the starting nonterminal by applying productions—in any order—until no nonterminals remain.

Note: Here we are using “**language**” in the technical sense meaning “a well-defined set of strings over the specified character set”.

```latex
\begin{align*}
\text{Character set: } & \{ (,) \} \\
\text{Terminals: } & \{ (, ) \} \\
\text{Nonterminals: } & \{ S \} \\
\text{Productions:} & \\
S & ::= (S) \\
S & ::= SS \\
S & ::= \epsilon \text{ (the empty string)} \\
\text{Starting nonterminal: } & S \\
\text{Sample derivation:} & \\
S & \rightarrow (S) \rightarrow (SS) \rightarrow ((S)S) \rightarrow (()S) \rightarrow (() (S)) \rightarrow (() ())
\end{align*}
```

This grammar generates the language of strings of properly matched parentheses.

It is often useful to think of a derivation as a **tree** (more shortly).

A **(context-free) Grammar** over a given **character set** consists of:
- A set of **terminals**, which are strings of zero or more characters.
- A set of **nonterminals**, which are variables representing a set of terminals.
- A set of **productions**, each of which has a **left side** consisting of a single nonterminal and a **right side** consisting of zero or more terminals or nonterminals.
- A distinguished **starting nonterminal**.

We can **apply** a production to a string by replacing some instance of the left side nonterminal by the right side.

The **context-free language** \(L(G) \) generated by a grammar \(G \) is the set of character strings that can be **derived** from the starting nonterminal by applying productions—in any order—until no nonterminals remain.

Note: Here we are using “**language**” in the technical sense meaning “a well-defined set of strings over the specified character set”.

```latex
\begin{align*}
\text{Character set: } & \{ (, ) \} \\
\text{Terminals: } & \{ (, ) \} \\
\text{Nonterminals: } & \{ S \} \\
\text{Productions:} & \\
S & ::= (S) \\
S & ::= SS \\
S & ::= \epsilon \text{ (the empty string)} \\
\text{Starting nonterminal: } & S \\
\text{Sample derivation:} & \\
S & \rightarrow (S) \rightarrow (SS) \rightarrow ((S)S) \rightarrow (()S) \rightarrow (() (S)) \rightarrow (() ())
\end{align*}
```
BNF was invented ca. 1960 and used in the formal description of Algol-60. It is just a particular notation for grammars, in which

- Nonterminals are represented by names inside angle brackets, e.g., \(<\text{program}>, \(<\text{expression}>, \(<\text{S}\.\)
- Terminals are represented by themselves, e.g., \(\text{WHILE}, (, 3\. The empty string is written as \(<\text{empty}\.\)

BNF Example...

EBNF

EBNF is (any) extension of BNF, usually with these features:

- A vertical bar, |, represents a choice,
- Parentheses, (and), represent grouping,
- Square brackets, [and], represent an optional construct,
- Curly braces, { and }, represent zero or more repetitions,
- Nonterminals begin with upper-case letters.
- Non-alphabetic terminal symbols are quoted, at least when necessary to avoid confusion with the meta-symbols above.

EBNF Example

```
<program> ::= BEGIN <statement-seq> END
<statement-seq> ::= <statement> ;
<statement> ::= <statement-seq>
<statement> ::= <while-statement>
<statement> ::= <for-statement>
<statement> ::= <empty>
<while-statement> ::= WHILE <expression> DO <statement-seq> END
<expression> ::= <factor>
<expression> ::= <factor> AND <factor>
<expression> ::= <factor> OR <factor>
<factor> ::= ( <expression> )
<factor> ::= <variable>
<for-statement> ::= . . .
<variable> ::= . . .
```

Syntax Analysis (Parsing)

Parser recognizes syntactically legal programs (as defined by a grammar) and rejects illegal ones.

- Successful parse also captures **hierarchical** structure of programs (expressions, blocks, etc.).
- Convenient representation for further semantic checking (e.g., typechecking) and for code generation.
- Failed parse provides error feedback to the user indicating where and why the input was illegal.

Any context-free language can be parsed by a computer program, but only some can be parsed efficiently. Modern programming languages can usually be parsed efficiently.

Lexical Analysis

Programming language grammars usually take simple tokens rather than characters as terminals. Converting raw program text into token stream is job of the **lexical analyzer**, which

- Detects and identifies keywords and identifiers.
- Converts multi-character symbols into single tokens.
- Handles numeric and string literals.
- Removes whitespace and comments.

Parse Trees

Graphical representation of a derivation.

Given this grammar:

\[
expr \rightarrow expr + expr \mid expr * expr \mid (expr) \mid -expr \mid id
\]

Example tree for derivation of sentence \(-(x + y)\):

```
expr
  |   expr
  |   expr + expr
  |   (expr)
  |   id x
  | id y
```

Each application of a production corresponds to an **internal** node, labeled with a **non-terminal**.

Leaves are labeled with **terminals**, which can have **attributes** (in this case the specific identifier name).

The derived sentence is found by reading leaves (or “fringe”) left-to-right.

Ambiguity

A given sentence in \(L(G)\) can have more than one parse tree. Grammars \(G\) for which this is true are called **ambiguous**.

Example: given the grammar on the last slide, the sentence \(a + b * c\) has two parse trees:

```
expr
  | expr
  | expr + expr
  | id a
  | id b

expr
  | expr
  | expr
  | id c
```

We may think of the left tree as being the “correct” one, but nothing in the grammar says this.

To avoid the problems of ambiguity, we can:

- Rewrite grammar; or
- Use “disambiguating rules” when we implement parser for grammar.
AMBIGUITY IN ARITHMETIC EXPRESSIONS

To disambiguate a grammar like

\[E \rightarrow E + E \mid E - E \mid E \times E \mid E / E \mid (E) \mid \text{id} \]

we need to make choices about the desired order of operations.

For any expression of the form \(X \ op_1 Y \ op_2 Z \) we must define:

- **Precedence** - which operation \((op_1 \text{ or } op_2)\) is done first?
- **Associativity** - if \(op_1 \) and \(op_2 \) have the same precedence, then does \(Y \) “associate” with the operator on the left or on the right?

In other words, we need rules to tell us whether the expression is equivalent to \((X \ op_1 Y) \ op_2 Z\) or to \(X \ op_1 (Y \ op_2 Z)\).

The “usual” rules (based on common usage in written math) give \(*\) and \(/\) higher precedence than \(+\) and \(-\), and make all the operators left-associative.

So, for example, \(a - b - c * d\) is equivalent to \((a - b) - (c * d)\).

But this is a matter of **choice** when defining the language.

LIMITATIONS OF CONTEXT-FREE GRAMMARS

Context-free grammars are very useful for describing the structure of programming languages and identifying legal programs.

But there are many useful characteristics of legal programs that **cannot** be captured in a grammar (no matter how clever we are).

For example, in many programming languages, every variable in a legal program must be declared before it is used. But this property cannot be captured in a grammar.

To show this formally, we can abstract the notion of “declaration before use” into a formal language

\[L = \{wcw \mid w \in (a \mid b)^*\} \]

It can be easily shown that no context-free grammar generates \(L\).

So checking legality of programs typically requires more than syntax analysis. Most compilers use a secondary “semantic” analysis phase to check non-syntactic properties, such as type-correctness. Of course, sometimes illegal programs cannot be detected until runtime.

REWRITING ARITHMETIC GRAMMARS

One way to enforce precedence/associativity is to build them into the grammar using extra non-terminals, e.g.:

\[
\begin{align*}
\text{factor} & \rightarrow (\text{expr}) \mid \text{id} \\
\text{term} & \rightarrow \text{term} \ast \text{factor} \mid \text{term} / \text{factor} \mid \text{factor} \\
\text{expr} & \rightarrow \text{expr} + \text{term} \mid \text{expr} - \text{term} \mid \text{term}
\end{align*}
\]

Example: \(a * b - c + d * e\)

PARSE TREES VS. ABSTRACT SYNTAX TREES

Parse trees reflect details of the **concrete** syntax of a program, which is typically designed for easy parsing.

For processing a language, we usually want a **simpler**, more **abstract** view of the program. (No firm rules about AST design: matter of taste, convenience.)

Simple concrete grammar:

\[
\begin{align*}
S & \rightarrow \text{while} \ '(', E \ ')', \ \text{do} \ S \mid \text{id} \ '','=\ E \\
E & \rightarrow E \ '+', T \mid E \ '-', T \mid T \\
T & \rightarrow \text{id} \mid \text{NUM} \mid '(', E \ ')'
\end{align*}
\]
While (n) do n = n - (b + 1)

```
while (E) do
   T
   ID n
```

Tree Grammars

AST’s obey a tree grammar. Rules have form

```
label : kind → (attr₁ . . . attrₘ) kind₁ . . . kindₙ
```

where the LHS classifies the possible node labels into kinds, and the RHS describes the label’s atomic attributes (if any, in parentheses) and the kinds of its subtrees (if any).

Example:

```
While : Stmt → Exp Stmt
Assign : Stmt → (string) Exp
Add : Exp → Exp Exp
Sub : Exp → Exp Exp
Id : Exp → (string)
Num : Exp → (int)
```

Abstract Syntax Captures the Essence

Concrete syntax is important for usability, but fundamentally superficial. The same abstract syntax can be used to represent many different concrete syntaxes.

Examples:

- C-like:
  ```
  while (n) do n = n - (b + 1);
  ```

- Fortran-like:
  ```
  do while(n .NE. 0)
      n = n - (b + 1)
  end do
  ```
CONCRETE SYNTAX EXAMPLES (2)

- COBOL-like:
  ```cobol
  PERFORM 100-LOOP-BODY
  WITH TEST BEFORE
  WHILE N IS NOT EQUAL TO 0
  100_LOOP-BODY.
  ADD B TO 1 GIVING T
  SUBTRACT T FROM N GIVING N
  ```

- Use Chinese keywords in place of while and do.
- Use a graphical notation.

INTERNAL REPRESENTATION OF ASTs IN C

AST's have recursive structure and irregular shape and size, so it makes sense to store them as heap data structures using one record for each tree node.

In C, Pascal, Ada, etc., we might use unions or variant records for the different node labels of each node kind. E.g., in C:

```c
struct stmt {
    enum { While, Assgn, ... } label;
    union {
        struct {
            struct exp *test;
            struct stmt *body;
        } while_s;
        struct {
            char *lhs;
            struct exp *rhs;
        } assgn_s;
    } u;
    ...
}
```

```c
struct exp {
    enum { Add, ..., Num } label;
    union {
        struct {
            struct exp *left;
            struct exp *right;
        } add_e;
        ...
        struct {
            int value;
        } num_e;
    } u;
    ...
}
```

AST’S IN JAVA

In Java, heap records are objects. We define classes corresponding to the various kinds and a subclass for each label, e.g.

```java
abstract class Stmt { }
class While extends Stmt {
    Exp test;
    Stmt body;
}
class Assgn extends Stmt {
    String lhs; Exp rhs;
}
...
abstract class Exp { }
class Add extends Exp {
    Exp left; Exp right;
}
...
class Num extends Exp {
    int value;
}
```

AST’S IN ML

In ML, we can use datatypes to define a suitable set of variants.

```ml
datatype stmt = While of exp * stmt
    | Assgn of string * exp
    | ...
and exp = Add of exp * exp
    | ...
    | Num of int
```
Heap Structure

All these approaches generate roughly the same heap structures, e.g. for

while (n) do n = n - (b + 1)

External Representation of ASTs

Although ASTs are designed as an internal program representation, it can be useful to give them an external form too that can be read or written by other programs or by humans.

Any external representation of ASTs must accurately reflect the internal tree structure as well as the “fringe” of the tree. Can’t use tree grammar to parse, since it is typically ambiguous!

One approach (deriving from the programming language LISP) is to use parenthesized prefix notation to represent trees.

Each node in the tree is represented by the expression

\[
(\text{label} \ \text{attr}_1 \ \ldots \ \text{attr}_m \ \text{child}_1 \ \text{child}_n)
\]

where the label is the node label, the attr, are the label’s attributes (if any), and the child, are the labels sub-trees (if any), each of which is itself a node expression. To make things more readable, we might use abbreviations for common labels, e.g., + for Add.

So the representation of our AST example could be

\[
(\text{While} \ (\text{Id} \ n) \n\quad (\text{Assgn} \ n \ (- \ (\text{Id} \ n) \n\quad (+ \ (\text{Id} \ b) \n\quad (\text{Num} \ 1))))))
\]

where the indentation is optional, but makes the representation easier for humans to read.

Parsing this representation is easy!