Values and Types

We divide the universe of values according to types; a type is:

- a set of values; and
- a collection of operations defined on those values.

In practice, important to know how values are represented and how operations are implemented on real hardware.

Examples:

- **Integers** (represented by machine integers) with the usual arithmetic operations (implemented by corresponding hardware instructions).
- **Booleans** (represented by machine bits or bytes) with operators and, or, not (implemented by hardware instructions or brief code sequences).
- **Arrays** (represented by contiguous blocks of machine addresses) with operations like fetch and update (implemented by address arithmetic and indirect addressing).
- **Strings** (represented how?) with operations like concatenation, substring extraction, etc. (implemented how?)
Composite Types

Composite types are built from existing types using type constructors.

Typical composite types include records, unions, arrays, functions, etc.

Abstractly, such type constructors can be seen as mathematical operators on underlying sets of simpler values. A small number of set operators suffices to describe most useful type constructors:

- Cartesian product ($S_1 \times S_2$)
- Sum (or disjoint union) ($S_1 \sqcup S_2$)
- Mapping (by explicit enumeration or by formula) ($S_1 \rightarrow S_2$)

In addition, we often need a way to represent recursive structures such as lists and trees.

Concretely, each language defines the internal representation of values of the composite type, based on the type constructor and the types used in the construction.

Example: The fields of a record might occupy successive memory addresses (perhaps with some alignment restrictions). The total size of the record is (roughly) the sum of the field sizes.

Often a range of representations are possible, from highly packed to highly indrected. There’s often a tradeoff between space and access time.

Static Type Systems

The main goal of a type system is to characterize programs that won’t “go wrong” at runtime.

Informally, we want to avoid programs that confuse types, e.g., by trying to add booleans to integers, or take the square root of a string.

Formally, we can give a set of typing rules (sometimes called as static semantics) from which we can derive typing judgments about program fragments. (This should sound familiar!)

Each judgment has the form

$$TE \vdash e : t$$

Intuitively this says that expression e has type t, under the assumption that the type of each free variable in e is given by the type environment TE.

As before, we write $TE(x)$ for the result of looking up x in TE, and $TE + \{x \mapsto t\}$ for the type environment obtained from TE by extending it with a new binding from x to t.

The key point is that an expression is well-typed if-and-only-if we can derive a typing judgment for it.

Static and Dynamic Typechecking

HLL’s differ from machine language in that explicit types appear and type violations are ordinarily caught at some point.

Static typechecking is most common.

- Types are associated with identifiers (esp. variables, parameters, functions).
- Every use of an identifier can be checked for type-correctness at compile time.
- “Well-typed programs don’t go wrong.”
- Compiler can optimize representations of values used at runtime.

Dynamic typechecking occurs in Lisp, Scheme, Smalltalk, many scripting languages, etc.

- Types are attached to values (usually as explicit tags).
- The type associated with identifiers can vary.
- Correctness of operations can’t (in general) be checked until runtime.
- Type violations become checked runtime errors.
- Optimized representation hard.

Typing Rules

Consider our usual simple imperative language, and suppose we have just two types, Int and Bool.

Here is a suitable set of typing rules:

$$x \in dom(TE) \quad \frac{TE \vdash x : TE(x)}{(Var)}$$

$$\frac{TE \vdash t : \text{Int}}{TE \vdash t : \text{Int}} \quad \frac{TE \vdash e_1 : \text{Int} \quad TE \vdash e_2 : \text{Int}}{TE \vdash (+ e_1 e_2) : \text{Int}} \quad \frac{TE \vdash e_1 : \text{Int} \quad TE \vdash e_2 : \text{Int}}{TE \vdash (<= e_1 e_2) : \text{Bool}} \quad \frac{TE \vdash t_1 \quad TE \vdash \{x \mapsto t_1\} \vdash e_2 : t_2}{TE \vdash \text{local } x \ e_1 e_2 : t_2} \quad \frac{TE(x) = t \quad TE \vdash e : t}{TE \vdash (= x e) : t} \quad \frac{TE \vdash e_1 : \text{Bool} \quad TE \vdash e_2 : t \quad TE \vdash e_3 : t}{TE \vdash (\text{if } e_1 e_2 e_3) : t} \quad \frac{TE \vdash e_1 : \text{Bool} \quad TE \vdash e_2 : t}{TE \vdash (\text{while } e_1 e_2) : \text{Int}}$$
Type Safety

The typing rules are just (another) formal system in which judgments can be derived. How do we connect this system with our slogan that "well-typed programs don’t go wrong"?

First we need an auxiliary judgment system assigning types to values, written \(\vdash v : t \).

For example, we would have \(\vdash i : \text{Int} \) for every integer \(i \), \(\vdash \text{true} : \text{Bool} \), and \(\vdash \text{false} : \text{Bool} \).

We also extend this notation to environments, and write \(\vdash E : T \) iff \(\text{dom}(E) = \text{dom}(TE) \) and \(\vdash (x) : TE(x), \forall x \in E \).

Now recall our formal dynamic semantics for our language, defined using \(\Downarrow \) judgments.

If everything has been defined correctly, we should be able to prove a theorem like this:

If \(TE \vdash e : t \) and \(\vdash E : TE \) then \(\exists v, E' \) such that \(\langle e, E \rangle \Downarrow \langle v, E' \rangle \) and \(\vdash v : t \).

In other words, well-typed programs evaluate to values (of the expected type); hence, they definitely don’t “get stuck” (cause runtime errors).

Static Typechecking

We can turn the typing rules into a recursive typechecking algorithm.

Structurally, the typechecker is very similar to the evaluators we have already built:

- it is parameterized by a type environment;
- it dispatches according to the syntax of the expression being checked (note that there is exactly one rule for each form);
- it calls itself recursively on sub-expressions;
- it returns a type.

There are some differences, though. For example, a typechecker always examines both arms of a conditional (not just one). If we consider a language with functions, the typechecker processes the body of each function only once, no matter how many times the function is called.

Note that most languages require the types of function parameters and return values to be declared explicitly. The typechecker can use this declaration to check that applications of the function are correctly typed, and separately checks that the body of the function is correctly typed.

Flexibility of Dynamic Typechecking

Static typechecking offers the great advantage of catching errors early, and generally supports more efficient execution.

Why ever consider dynamic typechecking?

- Simplicity. For short or simple programs, it’s nice to avoid the need for declaring the types of identifiers.
- Flexibility. Static typechecking is inherently more conservative about what programs it admits.

For example, suppose function \(f() \) happens to always return \(\text{false} \). Then this code

\[
(\text{if } f() \text{ then } "a" \text{ else } 2) + 2
\]

will never cause a runtime type error, but it will still be rejected by a static type system.

Perhaps more usefully, dynamic typing allows container data structures, to contain mixtures of values of arbitrary types, like this “list”:

\[
[2, \text{true}, 3.14]
\]

Some statically-typed languages, like Standard ML, offer alternative ways to approach these goals, via type inference and polymorphic typing.