Values and Types

Values are the entities or objects manipulated by programs.

We divide the universe of values according to types; a type is:

- a set of values; and
- a set of operations defined on those values; and/or
- a set of valid contexts.

Examples:

Integers with the usual arithmetic operations.

Booleans with operators and, or, not and valid as arguments to conditional operations.

Arrays with operations like fetch and store.

Sets with operations like membership testing, union, intersection, etc.
Characterizing Types and Values

- Set of values.

- Defined operations.

- Permitted contexts where values can be used.

(In particular, values that can be anonymously constructed, used in expressions, passed to and from procedures, and assigned into variables are called **first-class** values.)

- How values are **represented** and operations are **implemented**.

- How literal values are described.
Hardware Types

Machine language doesn’t distinguish types; all values are just bit patterns until used. As such they can be loaded, stored, moved, etc.

But certain operations are supported directly by hardware; the operands are thus implicitly typed.

Typical hardware types:

- **Integers** of various sizes, signedness, etc. with standard arithmetic operations.

- **Booleans** with boolean and conditional operations. (Usually just a special view of integers.)

- **Floating point** numbers of various sizes, with standard arithmetic operations.

- **Characters** with i/o operations.

- **Pointers** to values stored in memory.

- **Instructions**, i.e., code, which can be executed.

- Many others are possible, e.g., binary coded decimal.

Details of behavior (e.g., numeric range) are **machine-dependent**, though often subject to **standards** (e.g., IEEE floating point, ASCII characters).
Primitive (Atomic, Basic) Values and Types

Primitive values cannot be further broken down by user-defined code; they can be managed only via operators built into the language.

Typical primitive types include integers, floats, characters, booleans, enumerations, etc.

Usually closely allied to hardware types.

Example: enumerations.

Numeric types only approximate behavior of true numbers. Also, they often inherit machine-dependent aspects of machine types, causing serious portability problems.

Example: Integer arithmetic in most languages.

Partial counter-example: Numerics in Lisp.
Composite Values

Composite values are **constructed** from more primitive values, which can usually later be **selected** back from the composite, and perhaps selectively **updated**.

Example: Records (Ada syntax)

```ada
type EMP is
  record
    NAME : STRING;
    AGE : INTEGER;
  end record;

E: EMP := (NAME => "ANDREW", AGE => 99);

if E.NAME = "FRED" ..;

E.AGE := 88;
```

In **statically typed** languages, it is generally necessary to declare new composite types (e.g., EMP) before defining composite values (e.g., E). The type definition indicates how the type is constructed from more primitive types, using one of a few predefined **type constructors** (e.g., record).
Static and Dynamic Typing

HLL’s differ from machine language in that explicit types appear and type violations are ordinarily caught at some point.

Static typing is most common.

- Types are associated with identifiers (esp. variables, parameters, functions).
- Can be statically checked, if language and compiler allow.
- Compiler can optimize representations of values used at runtime.

Dynamic typing occurs in Lisp, Scheme, Smalltalk, many scripting languages, etc.

- Types are attached to values (usually explicitly).
- The type associated with identifiers can vary.
- Correctness of operations can’t generally be checked until runtime.
- Optimized representation hard.
Flexibility of Dynamic Typing

Static typing offers the great advantage of catching errors early, and generally supports more efficient execution.

Why ever settle for dynamic typing?

- Simplicity. For short or simple programs, it’s nice to avoid the need for declaring the types of identifiers.

- Flexibility. Dynamic typing allows container types, like lists or arrays, to contain mixtures of values of arbitrary types.

Note: Statically-typed functional languages (like Standard ML) offer alternative ways to achieve these aims, via type inference and polymorphic typing.
Example

Consider a program for reading and sorting an array. If we want it to work only on integers, static typing is great:

VAR a: ARRAY 100 of INTEGER;
PROCEDURE read(VAR a: ARRAY 100 of INTEGER) ...;
PROCEDURE sort(VAR a: ARRAY 100 of INTEGER) ...;
BEGIN read(a); sort(a) END

Program can be statically type-checked, \(a\) can be stored in a compact format, and \(\text{sort}\) knows what this format is.

But suppose we’d like the same program to work on arrays containing both integers and floats. In a dynamically typed language we might write:

VAR a: ARRAY 100;
PROCEDURE read(VAR a: ARRAY 100) ...;
PROCEDURE sort(VAR a: ARRAY 100) ...;
BEGIN read(a); sort(a) END

Now the elements of \(a\) can be of different types, so long as \(\text{read}\) and \(\text{sort}\) know how to check for and operate correctly on values of these types. Generally, each array element will need to be \textbf{tagged} with the correct type.
Data Structures

Programmers usually define composite types in order to implement **data structures** appropriate to an application and/or algorithm.

Abstractly, such data structures can be seen as mathematical operators on underlying **sets** of simpler values. A small number of type operators suffices to describe most useful data structures:

- Cartesian product \((S_1 \times S_2)\)
- Disjoint union \((S_1 + S_2)\)
- Mapping (by explicit enumeration or by formula) \((S_1 \rightarrow S_2)\)
- Set \((\mathcal{P}^S)\)
- Sequence \((S^*)\)
- Recursive structures (lists, trees, etc.)

Concretely, each language defines the internal **representation** of values of the composite type, based on the type constructor and the types used in the construction.

Example: The fields of a record might occupy successive memory addresses (perhaps with some alignment restrictions). The total size of the record is (roughly) the sum of the field sizes.

Often a range of representations are possible, from highly packed to highly indirected. There’s often a tradeoff between space and access time.
Representation of Data Structures

Historically, most languages provide direct representations only for a few data structures, usually those whose values can be represented efficiently on a conventional computer. Often, they are restricted so that all values will be of fixed size.

For conventional languages, this is the short list:

- **Records.**
- **Unions.**
- **Arrays.**

Many languages also support manipulation of **pointers** to values of these types, in order to allow moving data “by reference” and to support recursive structures.
Records = Cartesian Products

Records, tuples, “structures”, etc. Nearly every language has them.

“Take a bunch of existing types and choose one value from each.”

Examples (ML syntax):

```ml
  type emp = string * int  (unlabeled fields)
  type emp =
    {name: string, age: int}  (labeled fields)
```

ML also permits record values to be written without declaring explicit named type first.

(Java syntax)

```java
  class emp {  
    String name;  
    int age;  
  }
```


Representation: Usually as described above. Because records may be large, they are often manipulated by reference, i.e., represented by a pointer. The fields within a record may also be represented this way.
Records (continued)

Allowed contexts: In many languages, treated like primitive values, e.g., can be assigned as a unit, passed to or returned by functions, etc. But since they may be large, some languages add restrictions.

Literals: Most languages allow a literal record to be specified by specifying each component, either by position or by name. Some require components to be initialized after creation.
Disjoint Unions

Variant records, discriminated records, unions, etc.

“Take a bunch of existing types and choose one value from one type.”

Pascal Example:

```pascal
type RESULT = record
    case found : Boolean of
        true: (value:integer);
        false: (error:STRING)
    end;

function search (...) : RESULT;
...
```

Generally behave like records, with **tag** as an additional field.

Represented by the variant’s representation, usually plus a tag (thus forming a record). Size typically equals the size of the largest variant plus tag size.
Variant Insecurities

Pascal variant records are insecure because it is possible to manipulate the tag independently from the variant contents.

```pascal
tr.value := 101;
write tr.error;

if (tr.found) then begin
  ...
  tr := tr1;
  x := tr.value
```

These problems were fixed in Ada by requiring tag and variant contents to be set simultaneously, and inserting a runtime check on the tag before any read of the variant contents.
Disjoint Unions Done Properly

ML has very clean approach to building and inspecting disjoint unions:

```ml
datatype result =
  FOUND of integer |
  NOTFOUND of string

fun search (...) : result =
  if ... then
    FOUND 10
  else
    NOTFOUND "problem"

val r = search (...)

case r of
  FOUND x =>
    print ("Found it : " ^ (Int.toString x))
  | NOTFOUND s =>
    print ("Couldn’t find it : " ^ s)
```

Here `FOUND` and `NOTFOUND` tags are not ordinary fields. Case combines inspection of tag and extraction of values into one operation.

Java doesn’t support disjoint unions directly, but subclasses provide a (somewhat awkward) way to achieve the same effect.
Arrays and Mappings

Basic implementation idea: a table layed out in adjacent memory locations permitting indexed access to any element.

Mathematically: A finite mapping from an index set to a component set.

Index set is nearly always a set of integers $0 \ldots n$, where n is small enough to allow space for the entire array, or some other small discrete set isomorphic to them.

More general index sets are seldom supported directly by language because of the lack of a single, uniform, good implementation. Arrays with arbitrary index sets are sometimes called “associative arrays”

Many languages require the index set (and hence size) of arrays to be specified as part of each array type declaration. Others permit the size independently for each array value, when the array is first created. (Java and ML both do this.) Arrays are often large, and hence manipulated by reference. They may or may not be first-class.

Major security issue for arrays is bounds checking of index values. In general, it’s not possible to check all bounds at compile time (though often possible in particular cases). Runtime checks are always possible, but may cost.
Functions and Mappings

Mathematical mappings can also be represented by an algorithmic formula.

A function gives a “recipe” for computing a result value from an argument value.

A program function can describe an infinite mapping.

But differs from mathematical function in that:

- it must be specified by an explicit algorithm
- executing the function may have side-effects on variables.

It can be very handy to manipulate functions representing mappings as first-class values.
Sequences

What about data structures of essentially **unbounded** size, such as **sequences** (or **lists**)?

“Take an arbitrary number of values of some type.”

Such data structures require special treatment: they are typically represented by small segments of data linked by pointers, and dynamic storage allocation (and deallocation) is required.

The basic operations on a sequence include **concatenation** (especially concatenating a single element onto the head or tail of an existing sequence) and **extraction** of elements (especially the head). Best representation depends heavily on what nature and frequency of various operations.

An important example is the (unbounded) **string**. Although it’s hard to give a single, uniformly efficient implementation for them, they are so useful that languages increasingly do provide a built-in implementation. (Both ML and Java do; Java’s is not completely “built-in.”)
Defining Sequences

Unless the programming language supports sequences directly, the programmer must define them using a **recursive** definition.

For example, a list of integers is either

- **empty**, or
- has a **head** which is an integer and **tail** which is itself a list of integers.

ML has particularly clean mechanisms for describing recursive types.

```ml
datatype intlist =
  EMPTY
| CELL of int * intlist
```

Internally, the non-empty case can be represented by a two-element heap-allocated record, containing an integer and a **pointer** to another list. (Obviously, the tail list itself cannot be embedded in the record, since it’s size is unknown.) The empty case is conveniently represented by a **null** pointer.
ML’s built-in lists

Actually, lists are so commonly used in ML that they are built in, with essentially the following definition:

```ml
infixr ::
datatype 'a list =
  nil
| :: of 'a * 'a list
```

and the special notation \([e_1, e_2, \ldots, e_n]\) ≡

\(e_1 :: (e_2 :: \ldots :: (e_n :: \text{nil})\ldots)\)
Recursive Types

Recursion can be used to define and operate on more complex types, in which the type being defined appears more than once in the definition.

Example: binary trees with integer labels (only) at the leaves.

```plaintext
datatype 'a tree =
  INTERNAL of {left:'a tree, right:'a tree}
| LEAF of {contents:'a}
```

Now we must use recursion (not iteration) to process the full tree:

```plaintext
fun sum(tree: int tree) =
  case tree of
    INTERNAL{left,right} =>
      (sum left) + (sum right)
  | LEAF{contents} => contents
  end;
```
Reference Semantics

ML implementations implicitly allocate records (and disjoint unions) on the heap, and represent record values by references (pointers) into the heap. Java does the same thing with objects (although we must say new explicitly at points of allocation).

As a natural result, both languages use shallow copy semantics for assignment and argument passing. Example:

```java
class emp {
    String name;
    int age;
}
emp e1;
e1.age = 91;
emp e2 = e1;
e1.age = 18;
System.out.print(e2.age);
```

prints 18

Neither language allows user programs to manipulate the internal pointers directly. And neither supports explicit deallocation of records (or objects) either; both provide automatic garbage collection of unreachable heap values, thus avoiding both dangling pointer and memory leak bugs.
Explicit Pointers

Many previous languages had **pointer types** to enable programmers to construct recursive data structures, e.g., in C:

```c
typedef struct intcell *intlist;
struct intcell {
  int head;
  intlist tail;
}
intlist mylist =
  (intlist) malloc(sizeof(struct intcell));
while (list != NULL)
  if (list->head != i) then
    list = list->tail;
```

In most such languages, pointers are restricted to addresses returned by allocation operations, but C/C++ allows the address of **anything** to be taken and later dereferenced, and supports **pointer arithmetic**. While this feature can support very sufficient code, it also destroys the safety of the type system.
Type Equivalence

When do two identifiers have the “same” type, or “compatible” types?

I.e., if \(a \) has type \(t_1 \), \(b \) has type \(t_2 \) and \(f \) has type \(t_2 \rightarrow t_3 \), how must \(t_1 \) and \(t_2 \) be related for these to make sense?

\[
a := b
\]
\[
f \ (a)
\]

To maintain whatever security type-checking of primitive types gives us, we must insist at a minimum that \(t_1 \) and \(t_2 \) are structurally equivalent.

Structural equivalence is defined inductively:

- Primitive types are equivalent iff they are the same type.

- Cartesian product types are equivalent if their corresponding component types are equivalent. (Record field names are typically ignored.)

- Disjoint union types are equivalent if their corresponding component types are equivalent.

- Mapping types (arrays and functions) are the same if their domain and range types are the same. (Sometimes the cardinality of the index type of an array is ignored.)
Equivalence (continued)

Another way to say this: two types are equal if they have the same set of values.

Recursive types are a problem. Are these two types structurally equivalent?

```plaintext
type t1 = int * t1
type t2 = int * t2
```

Intuitively yes, but it’s (a little) tricky for a type-checking algorithm to determine this!
Type Names

Question becomes more interesting because of type names.

We name types for two possible reasons:

- As a convenient shorthand to avoid giving the full type each time. E.g.,

  ```haskell
  fun f(x:int * bool * real) :
    int * bool * real = ...
  type t = int * bool * real
  fun f(x:t) : t = ...
  ```

- As a way of improving program correctness by subdividing values into types according to their meaning within the program.

  ```haskell
  type polar = record r:real, a:real end;
  type rect = record x:real, y:real end;
  function polar_add(x:polar,y:polar) : polar ... 
  function rect_add(x:rect,y:rect) : rect ... 
  var a:polar; c:rect;
  a := (150.0,30.0) (* ok *)
  polar_add(a,a) (* ok *)
  c := a (* type error *)
  rect_add(a,c) (* type error *)
  ```

For this to be useful, some structurally equivalent types must be treated as inequivalent.
Name Equivalence

Basic idea: Two types are equivalent iff they have the same name.

Supports polar/rect distinction.

But pure name equivalence is very restrictive, e.g.:

```plaintext
type ftemp = real
type ctemp = real
var x:ftemp, y:ftemp, z: ctemp;
x := y; (* ok *)
x := 10.0; (* probably ok *)
x := z; (* type error *)
x := 1.8 * z + 32.0; (* probably type error *)
```

Different types now seem too distinct; can’t even convert from one form of real to another.

Also: what about unnamed type expressions?

```plaintext
type t = int * int
procedure f(x: int * int) = ...
procedure g(x: t) = ...
var a:t = (3,4)
g(a); (* ok *)
f(a); (* ok or not ?? *)
```

Most languages use mixed solutions.
C Type Equivalence

C uses structural equivalence for array and function types, but name equivalence for struct, union, and enum types. For example:

```c
char a[100];
void f(char b[]);
f(a); (* ok *)
```

```c
struct polar{float x; float y;};
struct rect{float x; float y;};
struct polar a;
struct rect b;
a = b; (* type error *)
```

A type defined by a `typedef` declaration is actually just an abbreviation for an existing type.

Note this policy makes it easy to check equivalence of recursive types, which can only be built using `structs`.

```c
struct fred {int x; struct fred *y;} a;
struct bill {int x; struct fred *y;} b;
a = b; (* type error *)
```
ML Type Equivalence

ML uses structural equivalence, except that each `datatype` declaration creates a new type unlike all others.

```ml
datatype polar = POLAR of real * real
datatype rect = RECT of real * real
val a = POLAR(1.0,2.0)
and b = RECT(1.0,2.0)
if (a = b) ... (* type error *)
```

Note that the mandatory use of constructors makes it possible to uniquely identify the types of literals.

Note that a `datatype` need not declare a record:

```ml
datatype fahrenheit = F of real
datatype centigrade = C of real
val a = F 150.0
val b = C 150.0
if (a = b) ... (* type error *)
fun convert(F x) = C(1.8 * x + 32.0) (* ok *)
```

For type abbreviation, ML offers the `type` declaration, which simply gives a new name for an existing type.

```ml
type celsius = centigrade
fun g(x:celsius) = if x = b ... (* ok *)
```
Abstract Data Types

Is a new type name a genuinely new type, equivalent to the built-in types?

Ideally, to mimic the behavior of built-in types, user-defined types should have an associated set of operators, and it should only be possible to manipulate types via their operators (and maybe a few generic operators such as assignment or equality testing).

In particular, when new types are given a representation in terms of existing types, it shouldn’t be possible for programs to inspect or change the fields of the representation.

Such a type is called an abstract data type (ADT), because to clients (users) of the type, its implementation is hidden.

We can implement an ADT by combining a type definition together with a set of function operating on the type into a module (or package, cluster, class, etc.) Additional hiding features are needed to make the type’s representation more-or-less invisible outside the module.
Example: Environments in SML

```
signature ENV =
sig
  type env
  val empty : env
  val extend : env -> (string * int) -> env
  val lookup : env -> string -> int option
end

structure Env => ENV =
struct
  type env = (string * int) list

  val empty = nil
  fun extend env (k,v) = (k,v)::env
  fun lookup ((k0,v0)::rest) k =
      if k = k0 then SOME v0
      else lookup rest k
  | lookup nil k = NONE
end (* Env *)
```

- ML also has a (non-module-based) `abstype` declaration form, but module form is just as powerful and more flexible.
Example: Environments in Java

class Env {
 private Link contents = null;
 private Env (Link c) {
 contents = c;
 }

 static final Env empty = new Env(null);

 Env extend(String k, int v) {
 return new Env(new Link(k,v,contents));
 }

 int lookup(String k) {
 Link c = contents;
 while (c != null) {
 if (c.key.equals(k))
 return c.value;
 else
 c = c.next;
 }
 return -1;
 }
}

• Note role of private constructor.

• Don't confuse abstract data types with abstract classes!
Interface vs. Implementation

Ideally, the client of an ADT is not supposed to know or care about its internal **implementation** details – only about its exported **interface**. Thus, it makes sense to separate the **textual** description of the interface from that of the implementation, e.g., into separate files.

For example, ML distinguishes **signatures** (module specifications) from **structures** (module bodies), and encourages them to be in separate files. Specifications give the names of types, and the names and types of functions in the package. Bodies give the definitions of the types and functions mentioned in the specification, and possibly additional private definitions.

One advantage of this separation is that clients of module X can be **compiled** on the basis of the information in the specification of X, without needing access to the the body of X (which might not even exist yet!)

Many languages, particularly in the C/C++ tradition, don’t make this separation very cleanly. Java supports it rather awkwardly using **abstract classes** (**interfaces** don’t quite work for this purpose).
Is abstraction always desirable?

Although the idea of defining explicitly all the operators for a type makes good logical sense, it can get quite inconvenient.

Programmers are used to assigning values or passing them as arguments without worrying about their types. They may also expect to be able to compare them, at least for equality, without regard to type.

So most languages that support ADT’s have built-in support for these basic operations, defined in a uniform way across all types. They also usually have facilities for overriding the built-in definitions with type-specific versions. (Some of the complexity of C++ derives from this.)

Unfortunately, it is impossible to generate code for operations that move or compare data without knowing things like the size and layout of the data. But these are characteristics of the type’s implementation, not its interface. So these “universal” operations break the abstraction barrier around type.

Thus, supporting these operations conflicts with separate compilation, often weakening support for the latter. The problem can also be solved, at some cost in efficiency, by treating all abstract values as fixed-size pointers to heap-allocated values.