Structured Control Flow

All modern higher-level imperative languages are designed to support structured programming.

Loosely, a structured program is one in which the syntactic structure of the program text corresponds to the flow of control through the dynamically executing program.

Originally proposed (most famously by Dijkstra) as an improvement on the incomprehensible "spaghetti code" that is easy to produce using the labels and jumps supported directly by hardware.

More specifically, structured programs use a very small collection of (recursively defined) compound statements to describe their control flow.

Compounds are of three kinds:

- Sequential composition: form a statement from a sequence of statements, e.g.
 (Java) \{ \ x = 2; \ y = x + 4; \}
 (Pascal) begin x := 2; y := x + 4; end

- Selection: execute one of several statements, e.g.,
 (Java) if \(x < 0 \) \ y = x + 1; else \ z = y + 2;

- Iteration: repeatedly execute a statement, e.g.,
 (Java) while \(x > 10 \) output(\(x-- \));//
 (Pascal) for \ x := 1 to 12 do output(\ x*2 \);

Selection

The basic selection statement is based on boolean values

\[\text{if } e \text{ then } s_1 \text{ else } s_2 \]

which translates to

\[
\text{evaluate } e \text{ into } t \\
\text{ cmp } t, \text{true} \\
\text{ brneq } l_1 \\
\text{ } s_1 \\
\text{ br } l_2 \\
\]

\[l_1: \ s_2 \]

\[l_2: \]

To test types with more than two values, multi-way selections against constants are appropriate:

\[\text{case}\ e \ \text{of} \]
\[\quad c_1 : s_1 \]
\[\quad c_2 : s_2 \]
\[\quad \ldots \]
\[\quad c_n : s_n \]
\[\quad \text{default : } s_d \]

The most efficient translation of case statements depends on density of the value \(c_1, c_2, \ldots, c_n \) within the range of possible values for \(e \).

Sparse Cases

For sparse distributions, it's best to translate the case just as if it were:

\[
\text{t := e;}
\text{if } t = c_1 \text{ then } s_1
\text{else if } t = c_2 \text{ then } s_2
\text{else}
\text{\ldots}
\text{else if } t = c_n \text{ then } s_n
\text{else}\]
\[s_d \]
Dense Cases

For a dense set of labels in the range \([c_1, c_n]\), it's better to use a jump table:

```
evaluate e into t
cmp t, c_1
brlt l_1
cmp t, c_n
brgt l_n
sub t, c_1, t
add table, t, t
br *t
```

```
table: l_1
       l_2
        ...
       l_n
l_1: s_1
     br done
l_2: s_2
     br done
    ...
l_n: s_n
     br done
l_2: s_d
done:
```

The best approach for a given case may involve a combination of these two techniques. Compilers differ widely in the quality of the code generated for case.

Iteration

The basic loop construct is

```
while e do s
```

corresponding to:

```
top: evaluate e into t
cmp t, true
breq done
s
br top
done:
```

A commonly-supported variant is to move the test to the bottom:

```
repeat s until e
```

which is equivalent to:

```
s;
while not e do s
```

Loop exits

It is sometimes desirable to exit from the middle of a loop:

```
loop
  s_1;
  exitif e;
  s_2
end
```

is equivalent to:

```
top: s_1
evaluate e into t
cmp t, true
breq done
s_2
br top
done:
```

C/C++/Java have an unconditional form of exit, called break. They also have a continue statement that jumps back to the top of the loop.

Uses for goto?

An efficient program with goto:

```c
int i;
for (i = 0; i < n; i++)
  if (a[i] == k)
    goto found;
++n;
a[i] = k;
b[i] = 0;
found:
  b[i]++;
```

In most languages (e.g., Modula, C/C++) there is no equivalently efficient solution without goto.

But we can do as well in Java, using a named, multi-level break:

```java
int i;
search:
  { for (i = 0; i < n; i++)
      if (a[i] == k)
        break search;
    ++n;
a[i] = k;
b[i] = 0;
  }
b[i]++;
```
The COME FROM statement

```c
10 J = 1
11 COME FROM 20
12 PRINT J
13 COME FROM 10
20 J = J + 2
```


But is this really a joke?

Even with a GO TO, we must examine both the branch and the target label to understand the programmer’s intent.

Fun with C

Problem: Sending characters to an output device as quickly as possible.

Given:

```c
char p[] = "hello world...";
char *m = p;
int n = ... /* length of p */
#define output(c) ... /* do output */
```

Solution 1:

```c
for (i = 0; i < n; i++)
    output(*m++);
```

Faster (maybe):

```c
if (n) do
    output(*m++)
while (--n);
```

(Avoids compare with n each time.)

More fun

Faster to unroll loop, say 4 times:

```c
while (n & 3) {
    output(*m++);
    --n;
};
```

```c
n /= 4;
if (n) do { output (*m++);
            output (*m++);
            output (*m++);
            output (*m++);
} while (--n);
```

Or (the Duff Loop):

```c
i = (n+3)/4;
if (n) switch (n & 3) {
    case 0: do {output (*m++);
                --n;
            } while (--i);
    case 3: output (*m++);
    case 2: output (*m++);
    case 1: output (*m++);
            while (--i);
    }
```

“This is the most amazing piece of C I’ve ever seen.” – Ken Thompson

Does this work in Java?
Systematic Removal of Recursion
(Adapted from Sedgewick, *Algorithms*, 2nd ed.. Examples in C.)

Original program:

typedef struct tree *Tree;
struct tree {
 float value;
 Tree left;
 Tree right;
};

float sumtree(Tree t) {
 float sum;
 if (t)
 sum = t->value
 + sumtree(t->left)
 + sumtree(t->right);
 else
 sum = 0.0;
 return sum;
}

Step 1:
Change functions to procedures by “globalizing” sum variable.

float sum;
void traverse(Tree t) {
 if (t) {
 sum += t->value;
 traverse(t->left);
 traverse(t->right);
 }
}
float sumtree(Tree t) {
 float sum;
 if (t)
 sum = t->value
 + sumtree(t->left)
 + sumtree(t->right);
 else
 sum = 0.0;
 return sum;
}

Step 2:
Remove tail-recursion.

float sum;
void traverse(Tree t) {
 top:
 if (t) {
 sum += t->value;
 traverse(t->left);
 t = t->right;
 goto top;
 }
 float sumtree(Tree t) {
 sum = 0.0;
 traverse(t);
 return sum;
 }
}

Step 3:
Use explicit stack to replace non-tail recursion. Simulate behavior of compiler by pushing local variables and return address onto the stack before call and popping them back off the stack after call.

Here there is only one local variable (t) and the return address is always the same, so there’s no need to save it.

Stack empty;
void push(Stack s,Tree t);
Tree pop(Stack s);
int isEmpty(Stack s);

float sum;
void traverse(Tree t) {
 Stack s = empty;
 top:
 if (t) {
 sum += t->value;
 push(s,t);
 t = t->left;
 goto top;
 }
 retaddr:
 t = t->right;
 goto top;
 }
 if (!(isEmpty(s))) {
 t = pop(s);
 goto retaddr;
 }
 float sumtree(Tree t) {
 sum = 0.0;
 traverse(t);
 return sum;
 }
Step 4:
Simplify by:

- Rearranging to avoid the retaddr label.
- Pushing right child instead of parent on stack.
- Replacing first goto with a while loop.
- Inlining traverse routine (now non-recursive) and re-localizing sum variable.

```c
float sumtree(Tree t) {
    Stack s = empty;
    float sum = 0.0;
    top:
        while (t) {
            sum += t->value;
            push(s,t->right);
            t = t->left;
        }
    if (!(isEmpty(s))) {
        t = pop(s);
        goto top;
    }
    return sum;
}
```

Step 5:
Rearrange some more to replace outer goto with another while loop.

(This is slightly wasteful, since an extra push, stackempty check and pop are performed on root node.

```c
float sumtree(Tree t) {
    Stack s = empty;
    float sum = 0.0;
    if (t) {
        push(s,t);
        while(!(isEmpty(s))) {
            t = pop(s);
            if (t) {
                sum += t->value;
                push(s,t->right);
                if (t->left)
                    push(s,t->left);
            }
        }
    }
    return sum;
}
```

Step 6:
A more symmetric version can be obtained by pushing and popping the left children.

Compare this to the original recursive program.

```c
float sumtree(Tree t) {
    Stack s = empty;
    float sum = 0.0;
    push(s,t);
    while(!(isEmpty(s))) {
        t = pop(s);
        if (t) {
            sum += t->value;
            push(s,t->right);
            push(s,t->left);
        }
    }
    return sum;
}
```

Step 7:
We can also test for empty subtrees before we push them on the stack rather than after popping them.

```c
float sumtree(Tree t) {
    Stack s = empty;
    float sum = 0.0;
    if (t) {
        push(s,t);
        while(!(isEmpty(s))) {
            t = pop(s);
            sum += t->value;
            if (t->right)
                push(s,t->right);
            if (t->left)
                push(s,t->left);
        }
    }
    return sum;
}
```
Stack Machines

Very simple machine architecture, in which instruction operands are taken from stack and results are put back on stack.

- Natural for handling arithmetic expressions (Reverse Polish Notation).
- Natural for handling recursive functions (arguments, locals, return values, return addresses).
- Allows very compact instruction encoding (e.g., byte code).
- Used in abstract machines and virtual machines (e.g., JVM).

Sample instruction set (from homework):

```plaintext
CONST int, ADD, SUB, MUL, DIV, POP
GOTO addr, BRANCHEQ addr, BRANCHLT addr
LOAD var, STORE var, EXTEND var, RETRACT
CALL func
```

Sample code for set \(x = (3 \times x) + g(8) \)

```plaintext
CONST 3
LOAD x
MUL
CONST 8
CALL g
ADD
STORE x
LOAD x
```

3 + (if \(x = 2 \) then \(y+4 \) else \(z \))

```plaintext
0: CONST 3
1: LOAD x
2: CONST 2
3: BRANCHEQ 5
4: GOTO 9
5: LOAD y
6: CONST 4
7: ADD
8: GOTO 10
9: LOAD z
10: ADD

let x = 1
in begin let x = 2 in x;
   x
end

CONST 1
EXTEND x
STORE x
CONST 2
EXTEND x
STORE x
LOAD x
RETRACT
POP
LOAD x
RETRACT
```