
Solving Type Inference Problems

This document attempts to record more carefully the sequence of steps done
“live” in Lecture 7b. Let’s spell out a sequence of steps that will solve the set
of type constraints generated from the example on slide 8 of that lecture.

You are not required to follow this approach in your homework
solutions! It is probably easier to just “eyeball” a solution to smaller problems.
This document is just for completeness.

Here are the constraints, numbered for easy reference:
(1a) tf = t2
(1b) t1 = t7
(2) t2 = tx → t3

(3a) t4 = bool

(3b) t3 = t5
(3c) t3 = t6
(4) t4 = tx
(5) t5 = tp
(6) t5 = tq

(7a) t7 = int

(7b) t8 = int

(7c) t9 = int

(8) t8 = int

(9) t10 = t11 → t9
(10) t10 = tf
(11) t11 = tr

A solution to this constraint problem defines the type of each variable in
terms of the ground types (i.e. variable-free types) int, bool, and →. This
solution can be viewed as a substitution from variables to types: if we apply the
solution substitution, then all the constraints turn into vacuous equalities, like
bool = bool.

To find such a solution, we use a unification algorithm. We process equations
one at a time. Depending on the shape of the equation being processed, either
this produces a substitution for some variable, which we apply to all other
equations in the problem, or it produces new equations to add to the problem.
In any case, we mark the equation as having been processed, so that we don’t
revisit it.

There are three shapes of equations to consider:

• var/nonvar: v = t or t = v for some t that is not a variable, i.e. t has
the form bool or int or d → r (for some types d, r). In this case, we
substitute t for v. One subtlety: if v appears in t, our constraint system
is circular, and does not have a solution with finite types, so we terminate
with an error.

• var/var: v1 = v2. In this case, we substitute one variable for the other (it
doesn’t matter which). If the vars are the same, there is nothing to do
(and we can drop the equation altogether).

1



• nonvar/nonvar t1 = t2 where neither t1 nor t2 is a variable. In this case,
if t1 and t2 are both int or bool, there is nothing to do (and we can drop
the equation altogether). If t1 = d1 → r1 and t2 = d2 → r2, then we add
the equations d1 = d2 and r1 = r2 to our problem. Finally, if t1 and t2
are different types, we terminate with an error: our constraint problem
doesn’t have a solution.

The order in which we process equations doesn’t really matter. We mark
processed equations with a ! sign. Note that we will continue to do substitutions
in these marked equations as we proceed; this is crucial because, even though
we never visit the marked equations again while solving, we will ultimately read
off the solution from them

So here’s how things might go. First, let’s eliminate all var/nonvar equations.
Initially, there are seven of them. Starting (somewhat at random) with (3a),
we substitute bool for t4 throughout the problem (i.e. in (4)), obtaining this
(slightly) simpler problem. .

(1a) tf = t2
(1b) t1 = t7
(2) t2 = tx → t3

(!3a) t4 = bool

(3b) t3 = t5
(3c) t3 = t6
(4) bool = tx
(5) t5 = tp
(6) t5 = tq

(7a) t7 = int

(7b) t8 = int

(7c) t9 = int

(8) t8 = int

(9) t10 = t11 → t9
(10) t10 = tf
(11) t11 = tr

Repeating the process for (7a), (7b), (7c) leads to:

2



(1a) tf = t2
(1b) t1 = int

(2) t2 = tx → t3
(!3a) t4 = bool

(3b) t3 = t5
(3c) t3 = t6
(4) bool = tx
(5) t5 = tp
(6) t5 = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(8) int = int

(9) t10 = t11 → int

(10) t10 = tf
(11) t11 = tr

Note that (8), which was originally one of the var/nonvar equations, has
now become a nonvar/nonvar equation as a result of substitution. Since it
has identical left and right-hand sides, processing it has no effect: in fact, we
can drop it altogether, since it no longer contains useful information. On the
other hand, we have gained two new var/no-var equations, namely (1b) and (4).
Processing them leads to the following state (note that applying the substitution
generated by (1b) doesn’t change anything, since t1 doesn’t appear anywhere
else in the problem):

(1a) tf = t2
(!1b) t1 = int

(2) t2 = bool → t3
(!3a) t4 = bool

(3b) t3 = t5
(3c) t3 = t6
(!4) bool = tx
(5) t5 = tp
(6) t5 = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9) t10 = t11 → int

(10) t10 = tf
(11) t11 = tr

Now, we could continue by processing the var/nonvar (2) and (9). But be-
cause the nonvar sides are a bit complex, it turns out to be easier to handle them
later. Instead we will now process all the var/var equations. It doesn’t matter
which variable we keep in each case; for uniformity, we’ll keep the type variables
corresponding to (program) variables in preference to those corresponding to
AST nodes. Doing this for (1a), (10), (11) leads to:

3



(!1a) tf = t2
(!1b) t1 = int

(2) tf = bool → t3
(!3a) t4 = bool

(3b) t3 = t5
(3c) t3 = t6
(!4) bool = tx
(5) t5 = tp
(6) t5 = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9) tf = tr → int

(!10) t10 = tf
(!11) t11 = tr

Processing (5, 3b, 3c) in that order gives the following (where the substitution
from (3c) has no effect):

(!1a) tf = t2
(!1b) t1 = int

(2) tf = bool → tp
(!3a) t4 = bool

(!3b) t3 = tp
(!3c) tp = t6
(!4) bool = tx
(!5) t5 = tp
(6) tp = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9) tf = tr → int

(!10) t10 = tf
(!11) t11 = tr

We choose arbitrarily to keep tq when processing (6), leading to

4



(!1a) tf = t2
(!1b) t1 = int

(2) tf = bool → tq
(!3a) t4 = bool

(!3b) t3 = tq
(!3c) tq = t6
(!4) bool = tx
(!5) t5 = tq
(!6) tp = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9) tf = tr → int

(!10) t10 = tf
(!11) t11 = tr

Finally, we are back to our remaining var/nonvar equations. Arbitrarily
choosing to process (2), we substitute as usual, ending up with:

(!1a) bool → tq = t2
(!1b) t1 = int

(!2) tf = bool → tq
(!3a) t4 = bool

(!3b) t3 = tq
(!3c) tq = t6
(!4) bool = tx
(!5) t5 = tq
(!6) tp = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9) bool → tq = tr → int

(!10) t10 = bool → tq
(!11) t11 = tr

This is the most interesting step. We are left with a nonvar/nonvar equation
with an arrow type on each side. To process this, we must replace it with two
new equations, equating the domain and range types of the arrows, thus:

5



(!1a) bool → tq = t2
(!1b) t1 = int

(!2) tf = bool → tq
(!3a) t4 = bool

(!3b) t3 = tq
(!3c) tq = t6
(!4) bool = tx
(!5) t5 = tq
(!6) tp = tq

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(9a) bool = tr
(9b) tq = int

(!10) t10 = bool → tq
(!11) t11 = tr

After processing these in the usual way, we have no more unprocessed equa-
tions, and we have reached a solution, which we can just read off from the
processed equations, which each now equate a variable with a ground term.

(!1a) bool → int = t2
(!1b) t1 = int

(!2) tf = bool → int

(!3a) t4 = bool

(!3b) t3 = int

(!3c) int = t6
(!4) bool = tx
(!5) t5 = int

(!6) tp = int

(!7a) t7 = int

(!7b) t8 = int

(!7c) t9 = int

(!9a) bool = tr
(!9b) tq = int

(!10) t10 = bool → int

(!11) t11 = bool

6


