
CS558 Programming Languages – Fall 2023 – Study Questions Lecture 7a

These questions are intended for self-study, to help review and deepen your understanding of the lecture.
Sample answers are available. There is nothing to hand in.

1. Using the typing rules on slide 8, write typing derivations for the following expressions, or else explain
briefly why it is impossible to produce such a tree. In all cases, assume that the initial typing environment is
the empty environment ∅.

(a) (+ (+ 1 2) 3)

(b) (+ x 1)

(c) (let x 0 (while (<= x 10) (:= x (+ x 1))))

(d) (let x (<= 0 1) (+ (if x 1 2) 3))

(e) (+ (if (<= 2 1) (<= 1 2) 3) 39)

2. Recall from Lab 4 the expression form (before e1 e2) whose informal semantics are as follows:
evaluate e1, remember the result value v, evaluate e2, throw away the result value, and then yield v as the
overall value of the expression. For example, the expression (before a (:= a 42)) sets a to 42 and
yields the old value of a as its result. Write down a static typing rule for before expressions in the style
of slide 8.

3. Recall from slide 19 that C uses name equivalence for struct types, and this can be used to distinguish
two structurally identical types in order to get finer-grained typechecking, as shown for polar and rect
types on that slide.

Use the same technique to express the code on slide 18 so that it correctly distinguishes between Farenheit
(ftemp) and Celsius (ctemp) temperatures, and permits the last assignment (converting a ctemp to an
ftemp).

4. Consider the following Java class definitions.

class A {
int x;

}

class B extends A {
int y;

}

Each Java class definition defines a new type. B is declared as a sub-class of A (by the extends keyword).
As a result, B inherits the fields of A, so every B value has an x field as well as a y field. Under Java’s
name-based typing rules, sub-classing implies subtyping, so B<:A.

(a) In the following function, which assignments (if any) are illegal under Java’s static typing rules?

void foo() {



A a = new B(); // #1
B b = new B(); // #2
a = b; // #3
b = a; // #4

}

(b) A Java interface declarations defines a set of methods (functions). A class can be declared to
implement an interface if the class definition defines all the methods listed in the interface with the
same or compatible types. (The methods must also be declared public.) Consider the following interface
and class definitions:

interface I1 {
A f(A a);

}

interface I2 {
B f(A a);

}

interface I3 {
A f(B b);

}

interface I4 {
B f(B b);

}

// A simple function to illustrate use of these interfaces:
void use_ifaces(I1 c1, I2 c2, I3 c3, I4 c4) {

A a;
B b;
A a1 = c1.f(a);
B b2 = c2.f(a);
A a3 = c3.f(b);
B b4 = c4.f(b);

}

class C1 {
public A f(A a) { a.x = a.x + 1; return a;}

}

class C2 {
public B f(A a) { B b = new B(); b.y = a.x; return b;}

}



class C3 {
public A f(B b) { b.x = b.y; return b;}

}

class C4 {
public B f(B b) { b.x = b.y; return b;}

}

Now consider the following structural subtyping rule for functions (an instance of which is illustrated on
slide 14):

t3 <: t1 t2 <: t4
t1 → t2 <: t3 → t4

(FunSub)

This rule is said to be covariant on the result types (the subtyping relation goes in the same direction) but
contravariant on the argument types (the subtyping relation goes in the opposite direction).

Pretend that Java uses this rule to determine when a member function in a class is a subtype of the declared
type in an interface. (In reality, Java uses a somewhat less permissive rule, in which the argument types must
be identical for subtyping to hold, but ignore that for this problem.) For each class, state which interfaces (if
any) the class implements.


