CS558 Programming Languages — Fall 2023 — Study Questions Lecture 6b

These questions are intended for self-study, to help review and deepen your understanding of the lecture.
Sample answers are available. There is nothing to hand in.

1. Explain why, in a language with only downwards funargs, if function £ defines a nested function g, it is
impossible for g to be called after £ has returned.

2. Scala has first-class functions that can have free variables, and it builds closures for them internally. But,
as illustrated on slide 9, we can also use the object-oriented features of Scala to model first-class functions
as objects, so that we never need to use functions with free variables. This exercise develops this idea. There
is no reason to use this technique in real Scala code, but the fact that it works shows the deep similarity
between closures and objects.

The basic idea is to represent a first class function of type A => B by a class that implements the following
Scala trait (which is similar to an abstract class or interface in Java, C++, etc.):

trait FCF[A,B] {
def apply(arg:A) : B

Here FCF is meant to stand for “first-class function” and A,B are type parameters. For example, the case
class given on slide 9 implements this trait:

case class MultiplesOf (n: Int) extends FCF[List[Int],List[Int]] {

def apply(xs:List[Int]) : List[Int] = xs match {
case Nil => Nil
case (y::ys) => if (y%n == 0) y::apply(ys) else apply(ys)

}
val evens = MultiplesOf (2)
val v = evens.apply(List(1,2,3,4)) // yields List (2,4)

Here is the £i1ter function in the same style. Note that the argument is now itself an FCF:

case class Filter[A] (p: FCF[A,Boolean]) extends FCF[List[A],List[A]] {
def apply(xs:List[A]) : List[A] = xs match {
case Nil => Nil
case (y::ys) => if (p.apply(y)) v::apply(ys) else apply(ys)

An ordinary Scala function can be converted into an FCF using this class:

case class MKFCFI[A,B] (f: A => B) extends FCFI[A,B] {
def apply(x:A) : B = f(x)



}

def evenf (x:Int) : Boolean = x%2 ==

val even : FCF[Int,Boolean] = MkKFCF (evenf)

val evens = Filter (even)

val v = evens.apply(List(1,2,3,4)) // yields List (2, 4)

// or, more compactly:

val vl = Filter (MKFCF ((x:Int) => x%2 == 0)) .apply(List(1,2,3,4))

This will actually work in Scala even if the mkFCF argument £ has free variables, but the idea here is to use
MkFCF only on functions that do not have any free variables, and use specialized clases like MultiplesOf
for functions that do.

Here are two exercises:

(a) Write the map function from lecture 6a slide 12 as a class implementing FCF [List [A],List [B] ],
and apply it to an FCF version of pow to get the cubes of List (1,2, 3).

(b) A more general version of the compose function from lecture 6a slide 11 can be written:

def composel[A,B,C](f: B => C, g : A => B) (x:A) = f(g(x))

Write this function as an FCF class, and wuse it to compute the equivalent of
compose ((x:Int) => x > 3, (y:Int) => vy * 2).

3. Convert the following Scala functions into continuation-passing style (CPS). Note that a necessary con-
dition of CPS is that all function calls must be tail calls, but this is not a sufficient condition: CPS is not the
same as “accumulator style.”

(a)

def fac(n:Int) :Int =
if (n < 2)
1
else n * fact(n-1)

(b) This one is trickier!

def fib(n:Int) :Int =
if (n < 2)
n
else fib(n-1) + fib(n-2)



