
CS558 Programming Languages – Fall 2023 – Study Questions Lecture 6a

These questions are intended for self-study, to help review and deepen your understanding of the lecture.
Sample answers are available. There is nothing to hand in.

1. Rewrite the following code so that it does not use nested functions, by lifting g and h to be top-level
functions and adding their free variables as extra explicit parameters.

def f (a:Int) = {
def g (b:Int) = {

def h (c: Int) = a+b+c
h(1) + h(2)

}
g (a + 10)

}

2. Consider the following Scala code defining an insertion sort function. Show how to use
this function to define two more specialized functions sortup:List[Int] => List[Int] and
sortdown:List[Int] => List[Int] that sort a list in ascending and descending order, respec-
tively, using anonymous functions to instantiate the comp parameter.

def insSort (comp: (Int, Int) => Boolean) (ys:List[Int]) : List[Int] = {
def ins (x:Int,xs:List[Int]) : List[Int] = xs match {

case Nil => List(x)
case h::t => if (comp (x,h)) x::h::t else h::(ins(x,t))
}

def srt (zs:List[Int]) : List[Int] = zs match {
case Nil => Nil
case h::t => ins(h,srt(t))

}
srt(ys)

}

3. Define the following Scala function by applying the map function defined on slide 12.

(a) above(n:Int) : List[Int] => List [(Int,Boolean)]

where above(n) pairs each member of a list of integers with a boolean indicating
whether it is greater than n. For example above (3) (List(1,2,4,3,5)) returns
List((1,false), (2,false), (4,true), (3,false), (5,true)). Use an anony-
mous function argument.

(b) sumeach : List[List[Int]] => List[Int]

which takes a list of lists of integers and returns a list of integers representing the sums of the original nested
lists. For example sumeach (List(List(1,2),List(4,5,6))) returns List(3,15). Use the
sum function from slide 13.



4. Use the Scala library’s version of foldr to implement the following functions, without us-
ing any imperative features or explicit recursion. Scala’s library writes this operator as :\ and it
takes its arguments in a slightly strange order: what slide 14 shows as foldr (c,n) l is writ-
ten in Scala as (l :\ n) c so, for example, we can sum the elements of the list 1,2,3 by writing
(List(1,2,3) :\ 0) ((x,a) => a + x). Note: Consult the Scala List API and the Scala book
chapter on “Working with Lists” for guidance and examples. Warning: in the online version (at least) of the
Scala book there is a consistent type-setting error: the string “:\” incorrectly appears as “:˜”.

(a) concat(xs:List[String]) : String returns the concatenation of the strings in list xs into a
single string.

(b) max(xs:List[Int]) : Int returns the maximum integer in list xs, which you can assume to be
non-empty.

(c) unzip[A,B](xys:List[(A,B)] : (List(A),List(B)) takes a list xys of pairs and re-
turns a pair consisting of a list of the first elements of xys and a list of the second elements of xys.


