These questions are intended for self-study, to help review and deepen your understanding of the lecture. Sample answers are available. There is nothing to hand in.

1. Consider the definitions on slide 5.
 Suppose \(E = \{ a \mapsto L_1, b \mapsto L_2 \} \) and \(S = \{ L_1 \mapsto 10, L_2 \mapsto 20, L_3 \mapsto 30 \} \).

 a. What is \(E(a) \)?

 b. What is \(E(c) \)?

 c. What is \(\text{Dom}(E) \)?

 d. What is \(E + \{ d \mapsto L_2 \} \)?

 e. What is \(E + \{ b \mapsto L_3 \} \)?

 f. What is \(S(L_2) \)?

 g. What is \(S(E(a)) \)?

 h. What is \(\text{Dom}(S) \)?

 i. What is \(S - \{ L_2 \} \)?

2. Draw a derivation tree for \(\text{let } x \ 10 \ (+ \ x \ (:= \ x \ 21)) \) in an empty environment and store.

3. (a) Suppose we want to add a sequencing expression to our language, where \(\text{after } \exp_1 \ \exp_2 \) evaluates \(\exp_1 \) and then \(\exp_2 \), and returns the value of \(\exp_2 \). Write down a suitable operational semantics rule for these expressions.

(b) Do we really need to have such a new kind of expression in our language? I.e., is there is an equivalent way to get the same behavior using existing expressions?