1. Consider the definitions on Lecture 3b slide 5.
Suppose \(E = \{ a \mapsto L_1, b \mapsto L_2 \} \) and \(S = \{ L_1 \mapsto 10, L_2 \mapsto 20, L_3 \mapsto 30 \} \).
 a. What is \(E(a) \) ?
 b. What is \(E(c) \) ?
 c. What is \(\text{Dom}(E) \) ?
 d. What is \(E + \{ c \mapsto L_2 \} \) ?
 e. What is \(E + \{ b \mapsto L_3 \} \) ?
 f. What is \(S(L_2) \) ?
 g. What is \(S(E(a)) \) ?
 h. What is \(\text{Dom}(S) \) ?
 i. What is \(S - \{ L_2 \} \) ?

2. Draw a derivation tree for \(\text{let} \ x \ 10 \ (+ \ x \ (:= \ x \ 21)) \).

3. (a) Suppose we want to add a sequencing expression to our language, where \(; \ \text{exp1} \ \text{exp2} \) evaluates \(\text{exp1} \) and then \(\text{exp2} \), and returns the value of \(\text{exp2} \). Write down a suitable operational semantics rule for these expressions.
 (b) Do we really need to have such a new kind of expression in our language? I.e., is there is an equivalent way to get the same behavior using existing expressions?