
CS558 Programming Languages – Fall 2023 – Study Questions Lecture 2a

These questions are intended for self-study, to help review and deepen your understanding of the lecture.
Sample answers are available. There is nothing to hand in.

1. (a) The schematic machine code for while loops shown on slide 19 is slightly inefficient because it
executes two branch instructions (one conditional and one unconditional) on each iteration of the loop body.
Write down a better schematic machine code sequence that executes just one branch per iteration of the
body. (Hint: Your sequence can start with an unconditional branch that is executed just once, no matter how
many times the loop iterates.)

(b) Slide 19 shows how a repeat statement can be translated into a while statement, but the translation
duplicates the code for the loop body s. Write down a schematic machine code sequence for repeat that
does not have this duplication.

2. Consider compiling the following case statement, where e is an integer-valued expression and the si are
arbitrary statements.

case e of
4 : s4
17 : s17
13 : s13
99 : s99
2 : s2
88 : s88
12 : s12
default: sd

end

Slide 17 showed how this can be compiled into a linear chain of if-then-else statements. For n case
labels, evaluating this code requires in the worst case O(n) equality comparisons—seven in this example.

Suppose instead that we want to compile the case statement into code that does a binary search on the
possible values to dispatch to the correct sub-statement. This should be possible using only O(log n) com-
parisons. Assume that the target language of our compiler has (only) a three-way comparison primitive that
compares a value against zero and branches to one of three sub-statements based on whether the result is
negative, zero, or positive:

ifsign v
<: s1 // execute this if v is negative
=: s2 // execute this if v is zero
>: s3 // execute this if v is positive

For example, the following code prints “is positive”.

x = 10+20



ifsign x
<: print "is negative"
=: print "is zero"
>: print "is positive"

(The IBM 704, an early processor that was the original compilation target for FORTRAN, had a similar
instruction, which inspired a similar operator in FORTRAN called the “arithmetic IF.” More modern pro-
cessors don’t have a three-way comparison instruction like this, but it is easily synthesized from a pair of
ordinary binary comparisons without affecting the asymptotic complexity of the code. We use it here to
make the exponential improvement given by binary search more obvious.)

Show pseudo-code (in the style of the slide) for the result of compiling this example into a decision tree of
nested ifsign statements. Executing your code should require evaluating only three ifsign tests in the
worst case. Note that multiple leaves of your tree will need to execute the statement sd; an ideal solution
will avoid duplicating that statement (which could in general be a large block), but this is not the crucial
point here.

3. Recall that in Scala, we can write a loop that iterates over consecutive numbers n, n+1, n+2, . . . ,m as
for (i <- n to m). As suggested in slide 21, we can also write for (i <- c) to iterate over any
collection c that has an iterator method. In fact, the first of these is just a special case of the second: the
Scala class Range is just a particular kind of collection that represents a set of consecutive integers. This is
a neat economy in the Scala language design.

Assume that a Range value carries these two pieces of data (this is a slight simplification of the real defini-
tion in Scala):

val start: Int // initial value of sequence
val end: Int // final value of sequence

Sketch how to implement an iterator class for a Range that can be used as shown at the bottom of
slide 21. Describe the data fields of the iterator, how it is constructed given a particulary Range r, and
the implementation of the hasNext() and next() methods. Don’t worry about using legal Scala
syntax; pseudo-code is fine. (Note: In real Scala, the hasNext method is defined as a parameter-
less method, so it must be called without parentheses; see https://www.artima.com/pins1ed/
composition-and-inheritance.html#10.3. So if you do want to try writing real Scala code
here, remember to omit the parentheses on this call when testing, or you’ll get a syntax error. )


