
CS 558 Programming Languages Fall 2023 – Practice Mid-term Exam Sample Solutions
1.(a) Yes, the grammar is ambiguous, because there are expressions with two distinct parse trees. For example, the expression
x+y+z has these two parse trees:

(b) No such program can exist. The only way evaluation order can affect the result is because of side-effects, and the only side-effect
in the language is assignment. The operands of ’+’ and ’*’ are always terms; evaluating terms never causes an assignment. So it
can’t matter which order the operands are evaluated.

2.(a,b,e) Marked below. For (e), the idea is that to achieve dynamic scope, we simply set the initial environment for evaluating
functions to the caller’s environment (rather than the lexical environment of the callee, which for this language is empty).

CS 558 Programming Languages Winter 2017 – Mid-term Exam Sample Solutions
1.(a) Yes, the grammar is ambiguous, as demonstrated by the existence of an expression with two distinct parse trees:

diagram here

(b) No such program can exist. The only way evaluation order can affect the result is because of side-effects, and the only side-effect
in the language is assignment. The operands of ’+’ and ’*’ are always terms; evaluating terms never causes an assignment. So it
can’t matter which order the operands are evaluated.

2.(a,b,e) Marked below.

case class Program(fdefs:List[FunDef], body:Expr) {} // ((fdefs) body)
case class FunDef(name:String, param:String, body:Expr) {} // (name param body)
sealed abstract class Expr {}
case class Num(n:Integer) extends Expr // n
case class Var(x:String) extends Expr // x
case class Add(l:Expr,r:Expr) extends Expr // (+ e e)
case class Apply(f:String,e:Expr) extends Expr // (@ f e)
case class Let(x:String,e:Expr,b:Expr) extends Expr // (let x e b)

type Env = Map[String,Int]
val emptyEnv : Env = Map[String,Int]()

def interp(p:Program): Int = {
def interpE(env:Env,e:Expr) : Int = e match {
case Num(n) => n
case Var(x) => env.getOrElse(x, throw InterpException("undefined variable:" + x))
case Add(l,r) => interpE(env,l) + interpE(env,r)
case Let(x,e,b) => {

val v = interpE(env,e)
interpE(env + (x->v),b)

}
case Apply(f,e) => {

val v = interpE(env,e)
for (fdef <- p.fdefs)

if (fdef.name == f)
return interpE(emptyEnv + (fdef.param->v),fdef.body)

throw InterpException("undefined function:" + f)
}

}
interpE(emptyEnv,p.body)

}

(c) Under static scoping, the use of y in the body of g is free, so interpreting the program raises the exception
InterException("undefined variable:y").

(d) Under dynamic scoping, the binding of y is visible inside g, so the program evaluates to 21 + 21 = 42.

1

CS 558 Programming Languages Winter 2017 – Mid-term Exam Sample Solutions
1.(a) Yes, the grammar is ambiguous, as demonstrated by the existence of an expression with two distinct parse trees:

diagram here

(b) No such program can exist. The only way evaluation order can affect the result is because of side-effects, and the only side-effect
in the language is assignment. The operands of ’+’ and ’*’ are always terms; evaluating terms never causes an assignment. So it
can’t matter which order the operands are evaluated.

2.(a,b,e) Marked below.

case class Program(fdefs:List[FunDef], body:Expr) {} // ((fdefs) body)
case class FunDef(name:String, param:String, body:Expr) {} // (name param body)
sealed abstract class Expr {}
case class Num(n:Integer) extends Expr // n
case class Var(x:String) extends Expr // x
case class Add(l:Expr,r:Expr) extends Expr // (+ e e)
case class Apply(f:String,e:Expr) extends Expr // (@ f e)
case class Let(x:String,e:Expr,b:Expr) extends Expr // (let x e b)

type Env = Map[String,Int]
val emptyEnv : Env = Map[String,Int]()

def interp(p:Program): Int = {
def interpE(env:Env,e:Expr) : Int = e match {
case Num(n) => n
case Var(x) => env.getOrElse(x, throw InterpException("undefined variable:" + x))
case Add(l,r) => interpE(env,l) + interpE(env,r)
case Let(x,e,b) => {

val v = interpE(env,e)
interpE(env + (x->v),b)

}
case Apply(f,e) => {

val v = interpE(env,e)
for (fdef <- p.fdefs)

if (fdef.name == f)
return interpE(emptyEnv + (fdef.param->v),fdef.body)

throw InterpException("undefined function:" + f)
}

}
interpE(emptyEnv,p.body)

}

(c) Under static scoping, the use of y in the body of g is free, so interpreting the program raises the exception
InterException("undefined variable:y").

(d) Under dynamic scoping, the binding of y is visible inside g, so the program evaluates to 21 + 21 = 42.

1

(c) Under static scoping, the use of y in the body of g is free, so interpreting the program raises the exception
InterException("undefined variable:y").

(d) Under dynamic scoping, the binding of y is visible inside g, so the program evaluates to 21 + 21 = 42.

1



3. (a) The result of h is the result of g, which is the value of b. But b was never initialized and its values is therefore undefined.

(b) In the generated code, the stack location of a in f is the same as the location of local variable b in g. The call to f sets this
location to 42; the code in g reads this location and uses it as the value for b, which is then returned. (Note: Without knowing what
assembly code gcc generates, you can’t be sure this is why the program behaves as it does, but it’s the most probable explanation.)

(c) A Java compiler would reject the program (during semantic analysis), because the use of b before it has been defined violates
Java’s “definite assignment” property.

(d) We would need to change the declaration of int b to var b : Int = ... or val b :Int = ..., for some expres-
sion ..., because Scala does not allow uninitialized local variables.

4.(a)

S; while (¬ E) do S

(b)
{P}S{Q} {Q ∧ ¬E}S{Q}

{P} repeat S until E {Q ∧ E}
(REPEAT-UNTIL)

5.

⟨ec1, E, S⟩ ⇓ ⟨vc1, S′⟩ ⟨ec2, E, S′⟩ ⇓ ⟨vc2, S′′⟩ vc1 ̸= 0 ⟨eb1, E, S′′⟩ ⇓ ⟨vb1, S′′′⟩
⟨(gifnz ec1 eb1 ec2 eb2), E, S⟩ ⇓ ⟨vb1, S′′′⟩

(Gif-1)

⟨ec1, E, S⟩ ⇓ ⟨vc1, S′⟩ ⟨ec2, E, S′⟩ ⇓ ⟨vc2, S′′⟩ vc2 ̸= 0 ⟨eb2, E, S′′⟩ ⇓ ⟨vb2, S′′′⟩
⟨(gifnz ec1 eb1 ec2 eb2), E, S⟩ ⇓ ⟨vb2, S′′′⟩

(Gif-2)

2


