
CS558  
Programming Languages

Fall 2023 
Lecture 9a 

Andrew Tolmach 
Portland State University 

© 1994-2023



Programming “in the large”
Language features for modularity are crucial for writing large 

programs 

Enable programmers to work on small part of a large system without 
understanding every detail of the whole 

Idea: related definitions can be grouped together into a named unit 

“module”, “package”, “class”, “namespace”, etc. 

defining functions, types, variables, constants, exceptions, sub-
modules, etc. 

Often possible to export just a subset of definitions, specified by an 
interface, for use outside the module 

Uses of definitions outside the module are qualified by module name



Example: Java packages
declares that all definitions in  
this file belong to package foo package foo;

public class A {
  A() {…B.y+C.z…}
}
class B {
  public static int x;
  static int y;
}
class C {
  static int z;
}

file1.java:

a = foo.A()
w = foo.B.x

file2.java:

import foo;
a = A()
w = B.x

file3.java:

makes declaration visible  
outside the package 

other declarations are only  
visible inside the package

from outside of package, elements 
are accessed using dot notation

or by importing entire package



Hiding and Abstraction
A module typically encapsulates a set of services or a facility 

for use by other parts of the program 

Sometimes we just want a sane way to manage global name 
space 

Usually we also want to abstract over these services, by 
keeping some implementation info (internal functions, type 
definitions, etc.) hidden behind an interface 

Allows independent development of service and client 

Allows implementation to be changed without affecting client 
code 

Improves clarity, maintainability, etc. of the code base



Interfaces
In many languages, interface to a module is given implicitly by 

using privacy modifiers on individual definitions 

Some languages allow interfaces to be specified explicitly, 
maybe in a separate file from the implementation 

An explicit interface is usually a set of top-level identifiers each 
with its type signature 

Makes it possible to write, type-check and (maybe) compile 
client code based just on the interface 

(In a sense, whole interface is type signature of whole 
module) 

Would also be nice to specify what interface elements do
but this is hard…



Abstract Data Types (ADT’s)
Can we apply same kind of abstraction to user-defined types 

to make client code independent of type representation and 
operator implementation? 

Ideally, user-defined types should have an associated set of 
operators, and clients should only be able to manipulate 
values via these operators  

(and maybe a few generic operators such as assignment 
or equality testing) 

Clients should not be able to inspect or change the fields of 
the value representation 

Idea: try to implement ADTs using modules and interfaces

ability to do this is an important test for language’s module facilities



ADT Example: Environments
Consider an ADT for mutable environments mapping 

strings to values (of some arbitrary type), with this 
interface (in a made-up language):

ADT EXAMPLE: ENVIRONMENTS

Consider an ADT for mutable environments mapping strings to values of

some arbitrary type. Here’s a signature (in a made-up abstract language):

type envV
operator empty() returns envV
operator extend(envV,string,V) returns void
operator lookup(envV,string) returns (Found(V) + NotFound)

Here envV means an environment carrying values of type V, and

Found(V) + NotFound is a disjoint union type.

One way to give a formal description of the desired interface behavior is

to state some laws that we want the operators to obey, where

{ stmts } =⇒ P means “P is true after execution of stmts.”

{ e = empty(); v = lookup(e,k) } =⇒ v = NotFound
{ v0 = lookup(e,k’); extend(e,k,v); v1 = lookup(e,k’) } =⇒

v1 = if k = k’ then Found(v) else v0

We look at possible implementations of the ADT in C, Java, and OCaml.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 10

environment carrying values of type v
disjoint union 

One way to give a formal description of the desired 
ADT behavior is to state some laws that we want the 
operators to obey:

{ stmts } ⇒ P means “P is true after execution of stmts"

{ e := empty; v := lookup(e,k) } ⇒ v == NotFound
{v0 := lookup(e,k’); extend(e,k,v); v1 := lookup(e,k’) ⇒
   v1 == if (k == k’) then Found(v) else v0



OCaml version: Interface and ClientOCAML VERSION: INTERFACE AND IMPLEMENTATION

env.mli:

type ’a t

val empty : unit -> ’a t

val extend : ’a t -> string -> ’a -> unit

val lookup : ’a t -> string -> ’a option

env.ml:

type ’a tree =

| Node of ’a tree * string * ’a * ’a tree

| Leaf

type ’a t = ’a tree ref

let empty () = ref Leaf

env.ml (continued):

let extend e k v =

let rec ext e =

match e with

| Leaf -> Node (Leaf,k,v,Leaf)

| Node (l,k0,v0,r) ->

if k < k0 then

Node(ext l,k0,v0,r)

else if k > k0 then

Node(l,k0,v0,ext r)

else (* k = k0 *)

Node(l,k,v,r) in

e := ext (!e)

let lookup e k = ...

• Compared to environment type in the previous OCaml example, this

one is polymorphic (’a is a type variable) and mutable.

• The ref constructor creates a storage location (a box). The ! operator

fetches the contents of the location and the := operator overwrites the

contents.

• The environment is represented by a binary search tree.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 18

env.mli:

OCAML VERSION: CLIENT

For completeness:

let main =

let e = Env.empty() in

Env.extend e "a" "alpha";

Env.extend e "b" "beta";

Env.extend e "a" "gamma";

assert (Env.lookup e "a" = Some "gamma");

assert (Env.lookup e "c" = None);

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 19

example-client.ml:

env is explicitly polymorphic 

 encodes disjoint union 

clients can be compiled using 
just the information in .mli 
even if implementation doesn’t 
exist yet!

.mli contains just  
the interface



OCaml version: Implementation

OCAML VERSION: INTERFACE AND IMPLEMENTATION

env.mli:

type ’a t

val empty : unit -> ’a t

val extend : ’a t -> string -> ’a -> unit

val lookup : ’a t -> string -> ’a option

env.ml:

type ’a tree =

| Node of ’a tree * string * ’a * ’a tree

| Leaf

type ’a t = ’a tree ref

let empty () = ref Leaf

env.ml (continued):

let extend e k v =

let rec ext e =

match e with

| Leaf -> Node (Leaf,k,v,Leaf)

| Node (l,k0,v0,r) ->

if k < k0 then

Node(ext l,k0,v0,r)

else if k > k0 then

Node(l,k0,v0,ext r)

else (* k = k0 *)

Node(l,k,v,r) in

e := ext (!e)

let lookup e k = ...

• Compared to environment type in the previous OCaml example, this

one is polymorphic (’a is a type variable) and mutable.

• The ref constructor creates a storage location (a box). The ! operator

fetches the contents of the location and the := operator overwrites the

contents.

• The environment is represented by a binary search tree.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 18

OCAML VERSION: INTERFACE AND IMPLEMENTATION

env.mli:

type ’a t

val empty : unit -> ’a t

val extend : ’a t -> string -> ’a -> unit

val lookup : ’a t -> string -> ’a option

env.ml:

type ’a tree =

| Node of ’a tree * string * ’a * ’a tree

| Leaf

type ’a t = ’a tree ref

let empty () = ref Leaf

env.ml (continued):

let extend e k v =

let rec ext e =

match e with

| Leaf -> Node (Leaf,k,v,Leaf)

| Node (l,k0,v0,r) ->

if k < k0 then

Node(ext l,k0,v0,r)

else if k > k0 then

Node(l,k0,v0,ext r)

else (* k = k0 *)

Node(l,k,v,r) in

e := ext (!e)

let lookup e k = ...

• Compared to environment type in the previous OCaml example, this

one is polymorphic (’a is a type variable) and mutable.

• The ref constructor creates a storage location (a box). The ! operator

fetches the contents of the location and the := operator overwrites the

contents.

• The environment is represented by a binary search tree.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 18

representation is a box  
containing a (pure)  
binary search tree

creates a box

type of boxes

fetches from a box

stores into a box

env.ml:

recompiling .ml does not 
affect clients as long as  
.mli  is  unchanged;  
only relinking is needed 

.ml contains just the implementation



Java version: Interface

JAVA VERSION: INTERFACE

interface Env<V> {

void extend(String k, V v);

V lookup(String k);

}

• A Java interface is just a variant on an abstract class that can only

contain instance methods (no variables or static members).

• Note that there is no empty method; we will need to use a (concrete)

constructor to make new environments.

• Java generics handle the polymorphism straightforwardly.

• We again use null (unreliably) to represent NotFound

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 15

there is no empty method; we will  
need to use a (concrete) constructor 
to make new environments

We use null (unreliably) 
to represent NotFound

Java generics handle the 
polymorphism straightforwardly

could use an abstract class 
instead

Env.java:
declares list of methods with their 
type signatures 



Java version: implementationJAVA VERSION: IMPLEMENTATION

class ListEnv<V> implements Env<V> {
private class Node {

String key;
V value;
Node next; // terminate with null
Node(String key,V value,Node next) {

this.key = key; this.value = value; this.next = next;
}

}

private Node e;

public ListEnv() {
this.e = null;

}

public void extend(String k, V v) {
e = new Node(k,v,e);

}

public V lookup(String k) {
for (Node u = e; u != null; u = u.next)

if (k.equals(u.key))
return u.value;

return null;
}

}

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 16

ListEnv.java:

creates new 
empty env

uses private 
linked list 
representation

Java garbage collector 
takes care of freeing  
environments when they 
are no longer accessible 

can only run out of 
space if entire Java 
program heap is full 



Java version: client
JAVA VERSION: CLIENT

class EnvClient {

public static void main(String argv[]) {

Env<String> e = new ListEnv<String>();

e.extend("a","alpha");

e.extend("b","beta");

e.extend("a","gamma");

String ax = e.lookup("a");

assert (ax.equals("gamma"));

String cx = e.lookup("c");

assert (cx == null);

}

}

• Client must commit to a particular implementation (here ListEnv)

• But otherwise is completely isolated from implementation details.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 17

EnvClient.java: client must commit to a  
particular implementation

but is completely isolated  
from implementation internals



C version: Interface
C doesn’t have explicit module constructs, but 

separate compilation and header files can be used to 
simulate them (unsafely)

C VERSION: INTERFACE

C doesn’t have explicit module constructs, but separate compilation and

header files can be used to simulate them (unsafely)

Here’s an env.h file, to be #included in both implementation and client:

struct envrep;

typedef struct envrep* Env;

Env empty(void);

void extend(Env e, char* k, void* v);

void* lookup(Env e, char* k);

• The typedef defines Env as a synonym for a pointer to the incomplete

envrep structure type. This lets client compile without knowing details of

envrep.

• We support polymorphism over values as long as they are pointers; C

permits (unsafe!) casting of any pointer to/from void*.

• We use NULL (unreliably) to represent NotFound.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 11

env.h:
header file to be #included in both 
implementation and clients

Defines Env as a synonym for a pointer 
to the incomplete envrep structure type. 
This lets client compile without knowing 
details of envrep

We again use NULL (unreliably)  
to represent NotFound Allow polymorphism over values as long 

as they are pointers; C permits (unsafe!) 
casting of any pointer to/from void*



C Version: Implementation
one possible implementation

env.c:

uses a pair of arrays 
to represent env 

can run out of room  
(unlike our abstract 
ADT description)

C VERSION: IMPLEMENTATION

A possible env.c file, using an array to represent environments:

#include "env.h"

#define SIZE 100

struct envrep {

int count;

char *keys[SIZE];

char *values[SIZE];

};

Env empty(void) {

Env e = malloc(sizeof(struct envrep));

if (e == NULL) exit(EXIT_FAILURE);

e->count = 0;

return e;

}

static int find(Env e, char* k) {

int i;

for (i = 0; i < e->count; i++)

if (e->keys[i] == k)

return i;

return -1;

}

void extend(Env e, char* k, void* v) {

int i = find(e,k);

if (i >= 0)

e->values[i] = v;

else {

if (e->count >= SIZE)

exit(EXIT_FAILURE);

e->keys[e->count] = k;

e->values[e->count] = v;

e->count += 1;

}

}

void* lookup(Env e, char* k) {

int i = find(e,k);

if (i >= 0)

return e->values[i];

else

return NULL;

}

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 12

C enforces that  
static function is  
invisible outside 
this file 

envrep is private to this 
file only by convention 
(not enforced by C) 

all non-static functions 
are globally visible and must 
be unique across entire program

can leak storage: ADT has 
no operator to delete an  
environment, but C does not 
have garbage collection 



C version: Client
C VERSION: CLIENT

#include <assert.h>

#include "env.h"

int main(void) {

Env e = empty();

extend(e,"a","alpha");

extend(e,"b","beta");

extend(e,"a","gamma");

char* ax = (char*) lookup(e,"a");

assert (strcmp(ax,"gamma") == 0);

char* cx = (char*) lookup(e,"c");

assert (cx == NULL);

}

• We must “downcast” the void* values returned by lookup.

• Nothing stops the client from including the concrete definition of envrep

(or using a different definition altogether) and corrupting the array.

PSU CS558 F’15 LECTURE 9 c© 1994–2015 ANDREW TOLMACH 14

example-client.c:

we must “downcast” the void* 
values returned by lookup

Nothing in the C language prevents a bad client from including 
the concrete definition of envrep (or using a different definition 
altogether) and corrupting the representation arrays.



Universal operations 
Although the idea of defining all operators for an 

ADT explicitly seems sensible, it can get quite 
tedious for the ADT author! 

For every types, we will need a way to assign 
values or pass them as arguments. We may also 
expect to be able to compare them (at least for 
equality). 

So many languages that support ADTs have built-in 
support for these basic operations, defined in an 
uniform way across all types — and sometimes also 
mechanisms for ADT authors to customize them.



Too much abstraction?
It is impossible for a compiler to generate client code 

for operations that move or compare data without 
knowing the size and layout of that data. 

But these are characteristics of the type’s 
implementation, not its interface! 

So these “universal” operations break the abstraction 
barrier around the type and prevent separate 
compilation 

A common fix (seen in our examples) is to require all 
abstract values to be boxed, giving a simple universal 
implementation for assignment and equality comparison


