
CS558 Programming Languages
Fall 2023

Lecture 8a

1

THE TYPE ZOO

int x = 17

Z[1023] := 99;

double e = 2.81828

type emp = {name: string, age: int}

class Foo extends Bar { ... }

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

String s = "abc"

type Days = set of Day

fold :: (a -> b -> b) -> [a] -> b -> b

’a btree = LEAF of ’a | NODE of ’a * ’a btree * ’a btree

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 2

ORGANIZING THE ZOO

Mathematical ⇐⇒ Programming Language ⇐⇒ Machine

View View View

Programming Language view: Types classify values and operations

Mathematical View: Types are sets of values

Machine View: Types describe memory layout of values

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 3

EXAMPLE: INTEGERS

Z ⇐⇒ int ⇐⇒

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 4

EXAMPLE: RECORDS

Z× Z ⇐⇒ {a:int,b:int} ⇐⇒

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 5

EXAMPLE: ARRAYS

N → Z ⇐⇒ int[] ⇐⇒

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 6

EXAMPLE: SEQUENCES

Z
∗

⇐⇒ [Int] ⇐⇒

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 7

MACHINE TYPES

Machine language doesn’t distinguish types; all values are just bit

patterns until used. As such they can be loaded, stored, moved, etc.

But certain type-specific operations are supported directly by hardware;

the operands are in some sense implicitly typed.

Typical machine-level types:

• Integers of various sizes, signedness, etc. with standard arithmetic

operations.

• Bit vectors of various sizes, with bit-level logic operations (and, or, etc.)

• Floating point numbers of various sizes, with standard arithmetic

operations.

• Pointers to values stored in memory, with load and store operations.

• Instructions, i.e., code, which can be executed.

There is no abstraction at machine level: programs can inspect individual

words and bits of any value.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 8

PRIMITIVE ATOMIC TYPES

Most higher-level languages provide some built-in atomic types.

• e.g. in Java: boolean, byte, short, int, long, char, float, double

Built-in type names and operators are keywords or part of initial

environment

Language may have special syntax for writing literal values (e.g.

numbers, character strings)

Atomic types are usually abstract: programs cannot inspect internal

details of value representation. e.g.,

• usually cannot extract mantissa or exponent from a floating point

number (C/C++ is an exception)

• can’t tell what convention is used to encode booleans as numbers

(C/C++ is an exception)

Atomic types are often closely based on standard machine-level types,

giving them an obvious representation and (usually) efficient

implementation for operations

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 9

CONSTRUCTED TYPES

Many languages also provide a set of mechanisms for constructing

new, user-defined types from existing types.

• e.g. Java has array and class definition mechanisms

Each type constructor comes with corresponding mechanisms for:

• constructing values

• inspecting values

• (for mutable types) modifying values

For example, in Java:

• arrays are constructed using new and an optional list of initializers; their

elements are inspected and modified using subscript notation (e.g. a[i]).

• class instances (objects) are constructed using new and defined

constructor methods; object fields can be accessed using dot notation

(e.g. p.x).

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 10

ABSTRACTION FOR CONSTRUCTED TYPES

Are constructed types abstract?

• User-defined types can’t be completely abstract, because we must have

access to their components in order to write operations over the type.

• But many languages have mechanisms for limiting component access

in order to enforce some level of abstraction, e.g. Java’s private fields

The line between built-in and user-defined types is not always clear-cut.

• e.g, in Java, the String type is really just an ordinary class that

happens to be provided in the standard library, except that there is

special syntax for string literals and concatenation.

• Built-in constructed type values usually need to be kept abstract in

order to guarantee that they behave as specified.

We will examine data abstraction mechanisms in detail later.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 11

MATHEMATICAL VIEW OF TYPE CONSTRUCTORS

It can be enlightening to view type constructors as operators on the

underlying sets represented by the component types.

Early on in the history of programming languages, it became clear that a

small number of type operators suffices to describe most useful data

structures:

• Cartesian product (S1 × S2)

• Disjoint union (S1 + S2)

• Mapping (by explicit enumeration or by formula) (S1 → S2)

• Set (PS)

• Sequence (S∗)

• Recursive definition (µs.T (s))

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 12

REPRESENTATION OF CONSTRUCTED TYPES

Concretely, each language defines the internal representation of

values of the composite type, based on the type constructor and the

types used in the construction.

Historically, most languages have provided just a few constructors,

usually with the property that constructed values can be represented and

accessed efficiently on conventional hardware.

For conventional languages, this is the short list:

• Records

• Unions

• Arrays

Many languages also support manipulation of pointers to values of these

types, in order to allow operating on data “by reference” and to support

recursive structures.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 13

RECORDS = CARTESIAN PRODUCTS

Records, tuples, “structures”, etc. Nearly every language has them.

“Take a bunch of existing types and choose one value from each.”

Examples (Ada Syntax)

type EMP is

record

NAME : STRING;

AGE : INTEGER;

end record;

E: EMP := (NAME => "ANDREW", AGE => 99);

(ML syntax):

type emp = string * int (unlabeled fields)

val e : emp = ("ANDREW",99);

type emp =

{name: string, age: int} (labeled fields)
val e : emp = {name="ANDREW",age=99};

Mathematically: emp = string × Z

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 14

RECORDS (CONTINUED)

Standard operations: construction, selection, selective update.

Representation: Fields occupy successive memory addresses (perhaps

with some padding to maintain hardware-required alignments), so total

size is (roughly) sum of field sizes.

Each field lives at a known static offset from the beginning of the record,

allowing very fast access using pointer arithmetic.

Because records may be large, they are often boxed, i.e., represented by

a pointer. The fields within a record may also be represented this way.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 15

DISJOINT UNIONS

Variant records, discriminated records, unions, etc.

“Take a bunch of existing types and choose one value from one type.”

Introduced in Pascal:

type RESULT = record

case found : Boolean of

true: (value:integer);

false: (error:STRING)

end;

function search (...) : RESULT;

Generally behave like records, with tag as an additional field.

A variant value is represented by the tag following by the representation

of the particular variant. Its size is thus bounded by the size of the largest

possible variant plus the tag size.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 16

VARIANT INSECURITIES

Pascal variant records are insecure because it is possible to manipulate

the tag independently from the variant contents.

tr.value := 101; { write an integer }

write tr.error; { but read a string! }

if (tr.found) then begin { check for integer }

tr := tr1; { overwrite with arbitrary RESULT }

x := tr.value { might now contain a string }

These problems were fixed in Ada by requiring tag and variant contents

to be set simultaneously, and inserting a runtime check on the tag before

any read of the variant contents.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 17

DISJOINT UNIONS DONE PROPERLY

ML has very clean approach to building and inspecting disjoint unions:

datatype result = FOUND of integer | NOTFOUND of string

fun search (..) : result =

if ... then FOUND 10 else NOTFOUND "problem"

case search(...) of

FOUND x =>

print ("Found it : " ^ (Int.toString x))

| NOTFOUND s =>

print ("Couldn’t find it : " ^ s)

Here FOUND and NOTFOUND tags are not ordinary fields. The case

expression combines inspection of tag and extraction of values into one

operation.

Mathematically: result = Z+ string

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 18

OBJECTS

Objects in class-based OO languages, e.g. Java, can be viewed as a sort

of variant record.

• The object’s class identifier is stored at the beginning of the record, and

acts like a variant tag, distingushing among different subclasses.

• The remaining record fields correspond to the object’s instance

variables.

The class tag is used to control dynamic dispatch to the class’s methods,

and (depending on the language) might be accessible more directly (e.g.

Java’s instanceof).

• The class tag cannot be altered after the object is created, so there is

no danger of insecurity.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 19

ARRAYS

The oldest type constructor, found in Fortran (the first real high-level

language); crucial for numerical computations.

Basic representation idea: a table laid out in adjacent memory locations

permitting indexed access to any element in constant time, using the

hardware’s ability to compute memory addresses.

Mathematically: A finite mapping from an index set to element set.

Index set is nearly always a set of integers 0..n− 1, or some other

discrete set isomorphic to such a set.

Multidimensional arrays (matrices) can be built in several ways:

• using an index set of tuples of integers (e.g. in Fortran)

• using an element set of arrays (e.g. in C/C++/Java)

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 20

ARRAY SIZE AND BOUNDS CHECKING

Is the size of an array part of its type? Some older languages (e.g.

Fortran) took this attitude, but most modern languages are more flexible,

and allow the size to be set independently for each array value when the

array is first created:

• as a local variable, e.g., in Ada:

function fred(size:integer);

var bill: array(0..size) of real;

• or on the heap, e.g., in Java:

int[] bill = new int[size];

Arrays are often large, and hence better to treat as boxed.

The major security issue for arrays is bounds checking of index values.

In general, it’s not possible to check all bounds at compile time (though

often possible in particular cases). Runtime checks are always possible;

this may be costly, but it is usually worth it!

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 21

FUNCTIONS AND MAPPINGS

Mathematical mappings can also be represented by an algorithmic

formula.

A function gives a “recipe” for computing a result value from an

argument value.

A program function can describe an infinite mapping.

But differs from mathematical function in that:

• it must be specified by an explicit algorithm

• executing the function may have side-effects on variables.

As we have seen, it can be very handy to manipulate functions as

first-class values.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 22

SEQUENCES

What about data structures of essentially unbounded size, such as

sequences (or lists)?

“Take an arbitrary number of values of some type.”

Such data structures require special treatment: they are typically

represented by small segments of data linked by pointers, and dynamic

storage allocation (and deallocation) is required.

The basic operations on a sequence include

• concatenation (especially concatenating a single element onto the

head or tail of an existing sequence); and

• extraction of elements (especially the head).

An important example is the (unbounded) string, a sequence of chars.

Best representation depends heavily on what nature and frequency of

various operations. Hard to give single, uniformly efficient

implementation.

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 23

DEFINING SEQUENCES

Unless the programming language supports sequences directly, the

programmer must define them using a recursive definition.

For example, a list of integers is either

• empty, or

• has a head which is an integer and tail which is itself a list of integers.

In mathematical notation, we can write

listZ = empty + (Z× listZ)

or, avoiding the need to name the type,

µt.(empty + (Z× t))

where the fixpoint operator µs.T (s) defines the smallest type s such that

s = T (s).

ML lets us write down this type almost directly:

datatype intlist = EMPTY | CELL of int * intlist

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 24

RECURSIVE TYPES

Recursive definitions can be used to define and operate on more

complex types, in which the type being defined appears more than once

in the definition.

For example, binary trees with integers at internal nodes and leaves

could be defined mathematically as

bintree = µt.(Z+ (t× Z× t))

As you know from the very first lab, these trees can be defined in Scala

using two case classes to represent the disjoint union:

abstract case class Tree

case class Leaf(v: Int) extends Tree

case class Node(l: Tree, v: Int, r: Tree) extends Tree

In ML we can simply write:

datatype tree =

Node of tree * int * tree

| Leaf of int

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 25

EFFICIENCY VS. RICH PRIMITIVE TYPES

Must language designers be slaves to hardware?

Historically, most mainstream, general-purpose languages have only

provided built-in types that can be given simple hardware

implementations with efficient and predictable performance.

But more modern languages are including more complicated primitive

types, because they are so useful. Examples:

• “Bignum” representations for arbitrary-precision numbers (Scheme,

Python, Haskell, etc.)

• Strings (Java, Python, Perl, etc.)

• “Associative arrays” in which index set can be an arbitrary type rather

than just integers (Awk, Perl, JavaScript, Python, etc.)

• Lists (LISP, Scheme, Haskell, Python, etc.)

• Sets (Pascal, SETL, Python, etc.)

PSU CS558 F’23 LECTURE 8A © 1994–2023 ANDREW TOLMACH 26

