
CS558 �
Programming Languages

Fall 2023

Lecture 7b

Andrew Tolmach

Portland State University

© 1994-2023

Dynamic Type Checking
Static type checking offers the great advantage of

catching errors early

And it generally supports more efficient execution

So why ever consider dynamic type checking?

Simplicity. For short or simple programs, it’s nice to
avoid the need to declare the types of identifiers

Flexibility. Static type checking is inherently more
conservative about what programs it allows.

Conservative Typing
For example, suppose + is defined on both strings

and numbers (but not mixtures of the two). Then

will never cause a run-time type error, but it will still
be rejected by a static type system

Dynamic typing allows container data structures to
contain mixtures of values of arbitrary types, e.g.

FLEXIBILITY OF DYNAMIC TYPECHECKING

Static typechecking offers the great advantage of catching errors early,

and generally supports more efficient execution.

Why ever consider dynamic typechecking?

• Simplicity. For short or simple programs, it’s nice to avoid the need for

declaring the types of identifiers.

• Flexibility. Static typechecking is inherently more conservative about

what programs it admits.

For example, suppose function f happens to always return false. Then

(if f() then "a" else 2) + 2

will never cause a runtime type error, but it will still be rejected by a static

type system.

Perhaps more usefully, dynamic typing allows container data structures,

to contain mixtures of values of arbitrary types, like this list:

List(2, true, 3.14)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 15

(if b then “a” else 2) + (if b then “c” else 3)

Type Inference
Some statically typed languages, like ML (and to a lesser

extent Scala), offer alternative ways to regain the flexibility
of dynamic typing, via type inference and polymorphism.

Type inference works like this:

The types of identifiers are automatically inferred from
the way they are used

The programmer is no longer required to declare the
types of identifiers (although this is still permitted)

Method requires that the types of operators and literals
is known

Inference Examples
INFERENCE EXAMPLES

(let f (fun (x) (+ x 2))
(@ f y))

The type of x must be int because it is used as an arg to +. So the type

of f must be int → int (i.e. the type of functions that expect an int

argument and return an int result), and y must be an int.

(let f (fun (x) (cons x nil))
(@ f true))

Suppose x has some type t. Then the type of f must be t → (list t).

Since f is applied to a bool, we must have t = bool.

(For the moment, we’re assuming the f must be given a unique

monomorphic type; we will relax this soon...)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 17

INFERENCE EXAMPLES

(let f (fun (x) (+ x 2))
(@ f y))

The type of x must be int because it is used as an arg to +. So the type

of f must be int → int (i.e. the type of functions that expect an int

argument and return an int result), and y must be an int.

(let f (fun (x) (cons x nil))
(@ f true))

Suppose x has some type t. Then the type of f must be t → (list t).

Since f is applied to a bool, we must have t = bool.

(For the moment, we’re assuming the f must be given a unique

monomorphic type; we will relax this soon...)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 17

For the moment, we assume that f must be given a unique
monomorphic type; we will relax this later…

Systematic Inference
Here’s a harder example:

Can only infer types by looking at both the function’s body
and its application

In general, we can solve the inference task by extracting a
collection of typing constraints from the program’s AST, and
then finding a simultaneous solution for the constraints using
unification

Extracted constraints tell us how types must be related if we
are to be able to find a typing derivation. Each node
generates one or more constraints

SYSTEMATIC INFERENCE

A harder example:

(let f (fun (x) (if x p q))
(+ 1 (@ f r)))

Can only infer types by looking at both the function’s body and its

applications.

In general, we can solve the inference task by extracting a collection of

typing constraints from the program’s AST, and then finding a

simultaneous solution for the constraints using unification.

Extract constraints that tell us how types must be related if we are to be

able to find a typing derivation. Each node generates one or more

constraints.

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 18

Rules for First-class Functions
To handle this example, we’ll need some extra

typing rules:
INFERENCE FOR FIRST-CLASS FUNCTIONS

We’ll need some extra type judgment rules:

TE + {x !→ t1} # e : t2
TE # (fun (x) e) : t1 → t2

(Fn)

TE # e1 : t1 → t2 TE # e2 : t1
TE # (@ e1 e2) : t2

(Appl)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 19

Inference Example

INFERENCE EXAMPLE

Fun(x) +

x p q

 Appl

f r

1If

Let(f) 1

2 7

3

4 5 6

8 9

10 11

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 20

SOLVING INFERENCE CONSTRAINTS

Node Rule Constraints

1 Let tf = t2 t1 = t7

2 Fun t2 = tx → t3

3 If t4 = bool t3 = t5 = t6

4 Var t4 = tx

5 Var t5 = tp

6 Var t5 = tq

7 Add t7 = t8 = t9 = int

8 Int t8 = int

9 Appl t10 = t11 → t9

10 Var t10 = tf

11 Var t11 = tr

Solution : t1 = t7 = t8 = t9 = t3 = t5 = tp = t6 = tq = int

t4 = tx = t11 = tr = bool t2 = tf = t10 = bool → int

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 21

SOLVING INFERENCE CONSTRAINTS

Node Rule Constraints

1 Let tf = t2 t1 = t7

2 Fun t2 = tx → t3

3 If t4 = bool t3 = t5 = t6

4 Var t4 = tx

5 Var t5 = tp

6 Var t5 = tq

7 Add t7 = t8 = t9 = int

8 Int t8 = int

9 Appl t10 = t11 → t9

10 Var t10 = tf

11 Var t11 = tr

Solution : t1 = t7 = t8 = t9 = t3 = t5 = tp = t6 = tq = int

t4 = tx = t11 = tr = bool t2 = tf = t10 = bool → int

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 21

Drawbacks of Inference
Consider this variant example:

Now the body of f returns type bool, but it is used in a
context expecting an int.

The corresponding extracted constraints will be
inconsistent; no solution can be found. Can report a type
error to the programmer.

But which is wrong, the definition of f or the use? No
good way to associate the error message with a single
program point.

DRAWBACKS OF INFERENCE

Consider this variant program:

(let f (fun (x) (if x p false)
(+ 1 (@ f r)))

Now the body of f return type bool, but it is used in a context expecting

an int.

The corresponding extracted constraints will be inconsistent; no solution

can be found. Can report this to the programmer.

But which is wrong, the definition of f or the use? Doesn’t really work to

associate the error message with a single program point. (In general,

may need to consider an arbitrarily long chain of program points.)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 22

Polymorphism
 Consider

 By extracting constraints and solving, we will get

 We could also write

 And get

(let snd (fun (l) (head (tail l)))
 (@ snd (cons 1 (cons 2 (cons 3 nil)))))

snd : (list int) → int

(let snd (fun (l) (head (tail l)))
 (@ snd (cons true (cons false (cons true nil)))))

snd : (list bool) → bool

Same definition!

Polymorphism (2)
 So why can’t we write something like this?

We can, by treating the type of snd as polymorphic

Here t is an unconstrained type variable

(let snd (fun (l) (head (tail l)))
 (block
 (@ snd (cons 1 (cons 2 (cons 3 nil))))
 (@ snd (cons true (cons false (cons true nil))))))

snd : (list t) → t

Inferring Polymorphism
In fact, if we extract constraints and solve just for the

definition (fun l (head (tail l))) without
considering its uses, we will end up with exactly the type
(list t) → t

We can assign this polymorphic type to snd allowing it to
be used multiple times, each with a different instance of t
(e.g. with t = bool or t = int).

By default, languages like ML infer the most polymorphic
possible type for every function

This is the natural result of the inference process we’ve
described

Parametric Polymorphism
We can think of these polymorphic types as being

universally quantified over their type variables and
instantiated at use sites

This is called parametric polymorphism because the
function definition is (implicitly) parameterized by the
instantiating type

In ML-like languages the quantification and
instantiation don’t actually appear

let snd : ∀t. list t -> t = …
in snd {bool} (true::false::nil);
 snd {int} (1::2::nil)

Explicit Parametric Polymorphism
Java generics and Scala type parameterization are also a

form a parametric polymorphism, in which type abstraction
and instantiation are (mostly) explicit

In parametric polymorphism, the behavior of the
polymorphic function is the same no matter what the
instantiating type is

In fact, an ML compiler typically generates just one piece
of machine code for each polymorphic function, shared by
all instances

 def snd[A](l: List[A]) : A = l.tail.head
 val a = snd[Boolean] (List(true,false))
 val b = snd(List(1,2))

Scala

Overloading and Ad-hoc Polymorphism

Most languages provide some form of overloading, where the same
function name or operator symbol means different things depending
on the types to which it is applied

e.g. overloading of arithmetic operators to work on either
integers or floats is very common

Some languages (e.g. Ada, C++) support user-defined overloading,
especially useful for user-defined types (e.g. complex numbers)

OO languages (e.g. C++,Java) often support method
overloading based on argument types

Overloading is sometimes called ad-hoc polymorphism, because
the implementation of the overloaded operator changes based on
the argument types

Static vs. Dynamic Overloading
In most statically-typed languages, overloading is resolved

statically; i.e. the compiler selects the right version of the
overloaded definition once and for all at compile time.

Dynamically-typed languages also often overload operators
(e.g. + on different kinds of numbers, strings, etc.)

Here the right version of the overloaded operator is picked at
runtime after checking the (runtime) types of the arguments

Of course, the operator might fail altogether if there is no
version suitable for the types discovered

Haskell type classes provide an unusual form of dynamic
overloading with a static guarantee that a suitable version exists

