Dynamic Type Checking

- Static type checking offers the great advantage of catching errors early.

- And it generally supports more efficient execution.

- So why ever consider dynamic type checking?

 - Simplicity. For short or simple programs, it’s nice to avoid the need to declare the types of identifiers.

 - Flexibility. Static type checking is inherently more conservative about what programs it allows.
Conservative Typing

- For example, suppose + is defined on both strings and numbers (but not mixtures of the two). Then

\[
(\text{if } b \text{ then } \text{"a"} \text{ else } 2) + (\text{if } b \text{ then } \text{"c"} \text{ else } 3)
\]

will never cause a run-time type error, but it will still be rejected by a static type system.

- Dynamic typing allows container data structures to contain mixtures of values of arbitrary types, e.g.

\[
\text{List}(2, \text{true}, 3.14)
\]
Type Inference

Some statically typed languages, like ML (and to a lesser extent Scala), offer alternative ways to regain the flexibility of dynamic typing, via **type inference** and **polymorphism**.

Type inference works like this:

- The types of identifiers are automatically inferred from the way they are used.
- The programmer is no longer required to declare the types of identifiers (although this is still permitted).
- Method requires that the types of operators and literals is known.
Inference Examples

\[(\text{let } f \ (\text{fun } (x) \ (+ \ x \ 2)) \ \ (@ \ f \ y))\]

The type of \(x\) must be \text{int} because it is used as an arg to \(+\). So the type of \(f\) must be \text{int} \to \text{int} (i.e. the type of functions that expect an \text{int} argument and return an \text{int} result), and \(y\) must be an \text{int}.

\[(\text{let } f \ (\text{fun } (x) \ (\text{cons } x \ \text{nil})) \ \ (@ \ f \ \text{true}))\]

Suppose \(x\) has some type \(t\). Then the type of \(f\) must be \(t \to (\text{list } t)\). Since \(f\) is applied to a \text{bool}, we must have \(t = \text{bool}\).

For the moment, we assume that \(f\) must be given a unique \textit{monomorphic} type; we will relax this later…
Systematic Inference

Here’s a harder example:

\[
\begin{align*}
\text{(let } f \text{ (fun } x \text{ (if } x \ p \ q)) \\
(+ \ 1 \ (@ \ f \ r))\end{align*}
\]

Can only infer types by looking at both the function’s body and its application.

In general, we can solve the inference task by extracting a collection of typing constraints from the program’s AST, and then finding a simultaneous solution for the constraints using unification.

Extracted constraints tell us how types must be related if we are to be able to find a typing derivation. Each node generates one or more constraints.
To handle this example, we’ll need some extra typing rules:

\[
\frac{\text{TE} + \{x \mapsto t_1\} \vdash e : t_2}{\text{TE} \vdash \text{(fun} (x) \text{ e}) : t_1 \rightarrow t_2} \quad \text{(Fn)}
\]

\[
\frac{\text{TE} \vdash e_1 : t_1 \rightarrow t_2 \quad \text{TE} \vdash e_2 : t_1}{\text{TE} \vdash \text{@} e_1 e_2 : t_2} \quad \text{(Appl)}
\]
Solution: \(t_1 = t_7 = t_8 = t_9 = t_3 = t_5 = t_p = t_6 = t_q = \text{int} \)
\(t_4 = t_x = t_{11} = t_r = \text{bool} \)
\(t_2 = t_f = t_{10} = \text{bool} \rightarrow \text{int} \)

Inference Example

Node	Rule	Constraints
1 | Let | \(t_f = t_2 \)
2 | Fun | \(t_2 = t_x \rightarrow t_3 \)
3 | If | \(t_4 = \text{bool} \)
4 | Var | \(t_4 = t_x \)
5 | Var | \(t_5 = t_p \)
6 | Var | \(t_5 = t_q \)
7 | Add | \(t_7 = t_8 = t_9 = \text{int} \)
8 | Int | \(t_8 = \text{int} \)
9 | Appl | \(t_{10} = t_{11} \rightarrow t_9 \)
10 | Var | \(t_{10} = t_f \)
11 | Var | \(t_{11} = t_r \)
Drawbacks of Inference

Consider this variant example:

\[
\text{(let } f \text{ (fun} (x) \text{ (if } x \text{ p false) (+ 1 (@ f r)))}
\]

Now the body of \(f \) returns type \text{bool}, but it is used in a context expecting an \text{int}.

The corresponding extracted constraints will be inconsistent; no solution can be found. Can report a type error to the programmer.

But which is wrong, the definition of \(f \) or the use? No good way to associate the error message with a single program point.
Polymorphism

Consider

\[
\text{snd : (list int) } \rightarrow \text{ int}
\]

By extracting constraints and solving, we will get

\[
\text{(let snd (fun (l) (head (tail l)))}
\]

\[
(@ \text{snd (cons 1 (cons 2 (cons 3 nil))))})
\]

We could also write

\[
\text{(let snd (fun (l) (head (tail l)))}
\]

\[
(@ \text{snd (cons true (cons false (cons true nil))))})
\]

And get

\[
\text{snd : (list bool) } \rightarrow \text{ bool}
\]
So why can't we write something like this?

(let snd (fun (l) (head (tail l)))
 (block
 (@ snd (cons 1 (cons 2 (cons 3 nil))))
 (@ snd (cons true (cons false (cons true nil))))))

We can, by treating the type of snd as **polymorphic**

```
snd : (list t) → t
```

Here `t` is an unconstrained **type variable**
Inferring Polymorphism

- In fact, if we extract constraints and solve just for the definition `(fun l (head (tail l)))` without considering its uses, we will end up with exactly the type `(list t) \rightarrow t`.

- We can assign this **polymorphic** type to `snd` allowing it to be used multiple times, each with a different **instance** of `t` (e.g. with `t = bool` or `t = int`).

- By default, languages like ML infer the **most polymorphic** possible type for every function.

- This is the natural result of the inference process we’ve described.
Parametric Polymorphism

We can think of these polymorphic types as being universally **quantified** over their type variables and **instantiated** at use sites

\[
\text{let } \text{snd} : \forall t. \text{list } t \rightarrow t = \ldots \\
\text{in } \text{snd } \{\text{bool}\} (\text{true}::\text{false}::\text{nil}); \\
\text{snd } \{\text{int}\} (1::2::\text{nil})
\]

This is called **parametric polymorphism** because the function definition is (implicitly) parameterized by the instantiating type

In ML-like languages the **quantification and instantiation** don’t actually appear
Explicit Parametric Polymorphism

- Java **generics** and Scala **type parameterization** are also a form of parametric polymorphism, in which type abstraction and instantiation are (mostly) **explicit**

```scala
def snd[A](l: List[A]) : A = l.tail.head
val a = snd[Boolean] (List(true,false))
val b = snd(List(1,2))
```

- In parametric polymorphism, the behavior of the polymorphic function is the **same** no matter what the instantiating type is

- In fact, an ML compiler typically generates just one piece of machine code for each polymorphic function, shared by all instances
Overloading and Ad-hoc Polymorphism

Most languages provide some form of **overloading**, where the same function name or operator symbol means **different** things depending on the types to which it is applied.

- e.g. overloading of arithmetic operators to work on either integers or floats is very common

Some languages (e.g. Ada, C++) support **user-defined** overloading, especially useful for user-defined types (e.g. complex numbers)

OO languages (e.g. C++, Java) often support method overloading based on argument types

Overloading is sometimes called **ad-hoc polymorphism**, because the implementation of the overloaded operator **changes** based on the argument types.
Static vs. Dynamic Overloading

- In most statically-typed languages, overloading is resolved \textit{statically}; i.e. the compiler selects the right version of the overloaded definition once and for all at compile time.

- Dynamically-typed languages also often overload operators (e.g. $+$ on different kinds of numbers, strings, etc.)

 - Here the right version of the overloaded operator is picked at \textit{runtime} after checking the (runtime) types of the arguments

 - Of course, the operator might fail altogether if there is no version suitable for the types discovered

- Haskell \textit{type classes} provide an unusual form of dynamic overloading with a static guarantee that a suitable version exists