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Values and Types
We divide the universe of values according to types 

A type is a set of values and a set of operations on them 

How is each value represented? How is each operation 
implemented?

Integers with +,-,etc. 
machine integer 
HW instruction

Booleans with &,|,~ 
machine bit or byte 

HW instruction/sequence
Arrays with read,update 

contiguous block of memory 
address arithmetic  

+ indirect addressing

Functions with apply 
closures 

jsr instruction



Atomic vs Constructed Types
Atomic (or primitive) types are those whose values cannot 

be taken apart or constructed by user code 

Can only manipulate using built-in language operators 

Typically includes the types that have direct hardware 
support  e.g., integers, floats, pointers, instructions 

Composite types are built from other types using type 
constructors 

User code can construct values, inspect/modify internals  

E.g. arrays, records, unions, function



Static Type Checking
High-level languages differ from machine code in that explicit types 

appear and type violations are usually caught at some point 

Static type checking is probably most common: FORTRAN, Algol, 
Pascal, C/C++, Java, Scala, etc. 

Types are associated with identifiers (variables, parameters, functions) 

Every use of an identifier can be checked for type-correctness before 
program is run 

“Well-typed programs don’t go wrong” (if type system is sound) 

Compilers can generate efficient code because it knows how each 
value is represented 

Type declarations provide useful documentation for code



Dynamic Type Checking
Dynamic type checking occurs in LISP, Smalltalk, Python, 

JavaScript, many other scripting languages 

Types are attached to values (usually as explicit tags) 

The type associated with an identifier can vary 

Correctness of operations can’t (in general) be checked until 
run time 

Type violations become checked run-time errors 

Generating optimized code and value representations is hard 

Programs can be harder to read



Static Type Systems
Main goal of a type system is to characterize 

programs that won’t “go wrong" at runtime 

Informally, we want to avoid programs that confuse 
types, e.g. by trying to add booleans to reals, or take 
the square root of a string 

More formally, we can give a set of typing rules 
(sometimes called static semantics) from which we 
can derive typing judgments about programs 

Program is well-typed if-and-only-if we can derive a 
typing judgment for it



Typing Judgments

STATIC TYPE SYSTEMS

The main goal of a type system is to characterize programs that won’t “go

wrong” at runtime.

Informally, we want to avoid programs that confuse types, e.g., by trying

to add booleans to integers, or take the square root of a string.

Formally, we can give a set of typing rules (sometimes called as static

semantics) from which we can derive typing judgments about program

fragments. (This should sound familiar!)

Each judgment has the form

TE ! e : t

Intuitively this says that expression e has type t, under the assumption

that the type of each free variable in e is given by the type environment

TE.

The key point is that an expression is well-typed if-and-only-if we can

derive a typing judgment for it.
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TYPING RULES

Consider a variant of our usual simple imperative expression language

(see Lecture 6), and suppose we have just two types, Int and Bool.

We write TE(x) for the result of looking up x in TE, and TE + {x !→ t}
for the type environment obtained from TE by extending it with a new

binding from x to t.

Here is a suitable set of typing rules:

TE(x) = t

TE # x : t
(Var)

TE # i : Int
(Int)

TE # e1 : Int TE # e2 : Int
TE # (+ e1 e2) : Int

(Add)
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TYPING RULES (2)

TE ! e1 : Int TE ! e2 : Int
TE ! (<= e1 e2) : Bool

(Leq)

TE ! e1 : t1 TE + {x "→ t1} ! e2 : t2
TE ! (let x e1 e2) : t2

(Let)

TE(x) = t TE ! e : t

TE ! (:= x e) : t
(Assgn)

TE ! e1 : Bool TE ! e2 : t TE ! e3 : t
TE ! (if e1 e2 e3) : t

(If)

TE ! e1 : Bool TE ! e2 : t
TE ! (while e1 e2) : Int

(While)
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Static Type Checking
We can turn the typing rules into a recursive type-

checking algorithm 

A type checker is very similar to the evaluators we 
have already built: 

It is parameterized by a type environment 

It dispatches according to the syntax of the 
expression being checked (note there is exactly 
one rule for each expression form) 

It calls itself recursively on sub-expressions



Static Type Checking (2)
But there are some differences: 

Type checker returns a type, not a value 

It must examine every possible execution path, but just once 

e.g. it examines both arms of a conditional expression (not just 
one) 

e.g. if our language has functions, it processes the body of 
each function only once, no matter how many places the 
function is called from 

Most languages require the types of function parameters and 
return values to be declared explicitly. The type checker can use 
this info to check separately that applications of the function are 
correctly typed and that the body of the function is correctly typed.



Type Compatibility
Rules so far assume that type checking is based on 

syntactic equality comparisons between types 

But we can often achieve a sound type system 
without requiring exact equality 

And we need a way to handle languages in which 
types can be named 

Leads to general questions about type compatibility 
or equivalence



Structural equivalence and subtyping
For example, suppose x has type t1 and e has type t2.  For 

which t1 and t2 is it sound to allow the assignment x := e ? 

If we think of types as sets of values, then the assignment is 
sound if every value in set t2 is also a value in set t1. 

That way, any expectations the code might have about x will 
be met by the value of e.

In this case, we say t2 is a structural subtype of t1, written  t2 <: t1 

As a important special case, if t1 and t2 describe exactly the 
same set of values, we say they are structurally equivalent, 
written t1 ≣ t2



Defining Structural Equivalence
Structural equivalence is defined inductively: 

Atomic types are equivalent if they are identical 

Constructed types are equivalent if they are the 
same kind of construction and their components 
are pairwise structurally equivalent. 

e.g. record types {a:t1,b:t2}≣{a:t3,b:t4} iff   
t1 ≣ t3 and t2 ≣ t4

similarly for unions, arrays, functions, etc.



Structural Subtyping
More generally, a given language might support 

structural subtyping for atomic or constructed values, 
e.g. (in imaginary language) 

char <: int32  (if no representation change is needed) 

{a:int, b:bool} <: {a:int}    (records)

(int32 => {a:int,b:bool}) <:           
(char => {a:int})             (functions) 

Depends on details of each type construction in 
specific language



Incorporating Subtyping
To add subtyping to language’s type system we add 

a subsumption rule 

We also extend the <: relation to a preorder

SUBTYPING RULES

We extend our language’s type system with a subsumption rule:

TE ! e : t′ t′ <: t
TE ! e : t

(Sub)

Now we must define the <: relation so that subsumption is a sound

typing rule.

We assume

t <: t
(Reflexive)

t′′ <: t′ t′ <: t

t′′ <: t
(Transitive)
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Type Names
Many languages let us define names for types 

This is a convenient shorthand to avoid repeating long 
type expressions 
 
 

For structural type equivalence, we just unfold the 
names before comparing types 

But special care is needed for recursive type names 
 

fun f(r:{x:int,y:bool,z:real}) : {x:int,y:bool,z:real} = …  
type t = {x:int,y:bool,z:real}  
fun f(r:t) : t = …

Standard ML

type t1 = {a:int,b:t1}     type t2 = {a:int,b:t2}

Standard ML syntax



Name equivalence
A more powerful use of type names is to harness the 

type-checker to help enforce program correctness by 
defining sets of values according to their program-specific 
meaning, e.g. 

To get the desired feedback from the type checker, we 
say  types are equivalent only if they have the same name 

Name equivalence implies structural equivalence but not 
vice-versa (that’s the whole point!)

TYPE NAMES

Question of equivalence is more interesting if language has type names,

which arise for two main reasons:

• As a convenient shorthand to avoid giving the full type each time, e.g.

function f(x:int * bool * real) : int * bool * real = ...
type t = int * bool * real
function f(x:t) : t = ...

• As a way of improving program correctness by subdividing values into
types according to their meaning within the program, e.g.

type polar = { r:real, a:real }
type rect = { x:real, y:real }
function polar_add(x:polar,y:polar) : polar = ...
function rect_add(x:rect,y:rect) : rect = ...
var a:polar; c:rect;
a := (150.0,30.0) (* ok *)
polar_add(a,a) (* ok *)
c := a (* type error *)
rect_add(a,c) (* type error *)

Whole idea here is that some structurally equivalent are treated as

inequivalent.
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made-up language



Pure Name Equivalence
Treating all named types as distinct is too restrictive 

Different type names now seem too distinct; cannot 
even convert from one form of real to another. 

So most languages used mixed equivalence models

NAME EQUIVALENCE

Simplistic idea: Two types are equivalent iff they have the same name.

Supports polar/rect distinction.

But pure name equivalence is very restrictive, e.g.:

type ftemp = real
type ctemp = real
var x:ftemp, y:ftemp, z: ctemp;
x := y; (* ok *)
x := 10.0; (* probably ok *)
x := z; (* type error *)
x := 1.8 * z + 32.0; (* probably type error *)

Different types now seem too distinct; can’t even convert from one form

of real to another.
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made-up language



C Type Equivalence
C uses structural equivalence for array and function 

types, but name equivalence for struct, union, and 
enum types, e.g. 

A type defined by a typedef declaration is just an 
abbreviation for an existing type.

C TYPE EQUIVALENCE

C uses structural equivalence for array and function types, but name

equivalence for struct, union, and enum types. For example:

char a[100];
void f(char b[]);
f(a); /* ok */

struct polar{float x; float y;};
struct rect{float x; float y;};
struct polar a;
struct rect b;
a = b; /* type error */

A type defined by a typedef declaration is just an abbreviation for an

existing type.

Note that this policy makes it easy to check equivalence of recursive

types, which can only be built using structs.

struct fred {int x; struct fred *y;} a;
struct bill {int x; struct fred *y;} b;
a = b; /* type error */
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typedef struct polar Polar;
Polar c = a;   /* ok */

C

C



Java Type Equivalence
Java uses nearly strict name equivalence, where names are 

either: 

One of 8 built-in primitive types (int,float,boolean,…), or 

Declared classes or interfaces (reference types) 

The only non-trivial type expressions that can appear in a 
source program are array types, which are compared structurally, 
using name equivalence for the ultimate element type. 

Java has no mechanism for naming type abbreviations.



Java Subtyping
Java types form a name-based subtyping hierarchy 

If class A extends class B, then A <: B 

If class A implements interface I, then A <: I 

If numeric type t can be coerced to numeric type u 
without loss of precision, then t <: u 

This may require the compiler to insert a run 
time coercion from t to u


