
CS558
Programming Languages

Fall 2023
Lecture 7a

Andrew Tolmach
Portland State University

© 1994-2023

Values and Types
We divide the universe of values according to types

A type is a set of values and a set of operations on them

How is each value represented? How is each operation
implemented?

Integers with +,-,etc.
machine integer
HW instruction

Booleans with &,|,~
machine bit or byte

HW instruction/sequence
Arrays with read,update

contiguous block of memory
address arithmetic

+ indirect addressing

Functions with apply
closures

jsr instruction

Atomic vs Constructed Types
Atomic (or primitive) types are those whose values cannot

be taken apart or constructed by user code

Can only manipulate using built-in language operators

Typically includes the types that have direct hardware
support e.g., integers, floats, pointers, instructions

Composite types are built from other types using type
constructors

User code can construct values, inspect/modify internals

E.g. arrays, records, unions, function

Static Type Checking
High-level languages differ from machine code in that explicit types

appear and type violations are usually caught at some point

Static type checking is probably most common: FORTRAN, Algol,
Pascal, C/C++, Java, Scala, etc.

Types are associated with identifiers (variables, parameters, functions)

Every use of an identifier can be checked for type-correctness before
program is run

“Well-typed programs don’t go wrong” (if type system is sound)

Compilers can generate efficient code because it knows how each
value is represented

Type declarations provide useful documentation for code

Dynamic Type Checking
Dynamic type checking occurs in LISP, Smalltalk, Python,

JavaScript, many other scripting languages

Types are attached to values (usually as explicit tags)

The type associated with an identifier can vary

Correctness of operations can’t (in general) be checked until
run time

Type violations become checked run-time errors

Generating optimized code and value representations is hard

Programs can be harder to read

Static Type Systems
Main goal of a type system is to characterize

programs that won’t “go wrong" at runtime

Informally, we want to avoid programs that confuse
types, e.g. by trying to add booleans to reals, or take
the square root of a string

More formally, we can give a set of typing rules
(sometimes called static semantics) from which we
can derive typing judgments about programs

Program is well-typed if-and-only-if we can derive a
typing judgment for it

Typing Judgments

STATIC TYPE SYSTEMS

The main goal of a type system is to characterize programs that won’t “go

wrong” at runtime.

Informally, we want to avoid programs that confuse types, e.g., by trying

to add booleans to integers, or take the square root of a string.

Formally, we can give a set of typing rules (sometimes called as static

semantics) from which we can derive typing judgments about program

fragments. (This should sound familiar!)

Each judgment has the form

TE ! e : t

Intuitively this says that expression e has type t, under the assumption

that the type of each free variable in e is given by the type environment

TE.

The key point is that an expression is well-typed if-and-only-if we can

derive a typing judgment for it.

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 9

TYPING RULES

Consider a variant of our usual simple imperative expression language

(see Lecture 6), and suppose we have just two types, Int and Bool.

We write TE(x) for the result of looking up x in TE, and TE + {x !→ t}
for the type environment obtained from TE by extending it with a new

binding from x to t.

Here is a suitable set of typing rules:

TE(x) = t

TE # x : t
(Var)

TE # i : Int
(Int)

TE # e1 : Int TE # e2 : Int
TE # (+ e1 e2) : Int

(Add)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 10

Rules for a simple language

TYPING RULES

Consider a variant of our usual simple imperative expression language

(see Lecture 6), and suppose we have just two types, Int and Bool.

We write TE(x) for the result of looking up x in TE, and TE + {x !→ t}
for the type environment obtained from TE by extending it with a new

binding from x to t.

Here is a suitable set of typing rules:

TE(x) = t

TE # x : t
(Var)

TE # i : Int
(Int)

TE # e1 : Int TE # e2 : Int
TE # (+ e1 e2) : Int

(Add)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 10

TYPING RULES (2)

TE ! e1 : Int TE ! e2 : Int
TE ! (<= e1 e2) : Bool

(Leq)

TE ! e1 : t1 TE + {x "→ t1} ! e2 : t2
TE ! (let x e1 e2) : t2

(Let)

TE(x) = t TE ! e : t

TE ! (:= x e) : t
(Assgn)

TE ! e1 : Bool TE ! e2 : t TE ! e3 : t
TE ! (if e1 e2 e3) : t

(If)

TE ! e1 : Bool TE ! e2 : t
TE ! (while e1 e2) : Int

(While)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 11

TYPING RULES (2)

TE ! e1 : Int TE ! e2 : Int
TE ! (<= e1 e2) : Bool

(Leq)

TE ! e1 : t1 TE + {x "→ t1} ! e2 : t2
TE ! (let x e1 e2) : t2

(Let)

TE(x) = t TE ! e : t

TE ! (:= x e) : t
(Assgn)

TE ! e1 : Bool TE ! e2 : t TE ! e3 : t
TE ! (if e1 e2 e3) : t

(If)

TE ! e1 : Bool TE ! e2 : t
TE ! (while e1 e2) : Int

(While)

PSU CS558 F’15 LECTURE 7 c© 1994–2015 ANDREW TOLMACH 11
Assumes just two types: Int and Bool

Static Type Checking
We can turn the typing rules into a recursive type-

checking algorithm

A type checker is very similar to the evaluators we
have already built:

It is parameterized by a type environment

It dispatches according to the syntax of the
expression being checked (note there is exactly
one rule for each expression form)

It calls itself recursively on sub-expressions

Static Type Checking (2)
But there are some differences:

Type checker returns a type, not a value

It must examine every possible execution path, but just once

e.g. it examines both arms of a conditional expression (not just
one)

e.g. if our language has functions, it processes the body of
each function only once, no matter how many places the
function is called from

Most languages require the types of function parameters and
return values to be declared explicitly. The type checker can use
this info to check separately that applications of the function are
correctly typed and that the body of the function is correctly typed.

Type Compatibility
Rules so far assume that type checking is based on

syntactic equality comparisons between types

But we can often achieve a sound type system
without requiring exact equality

And we need a way to handle languages in which
types can be named

Leads to general questions about type compatibility
or equivalence

Structural equivalence and subtyping
For example, suppose x has type t1 and e has type t2. For

which t1 and t2 is it sound to allow the assignment x := e ?

If we think of types as sets of values, then the assignment is
sound if every value in set t2 is also a value in set t1.

That way, any expectations the code might have about x will
be met by the value of e.

In this case, we say t2 is a structural subtype of t1, written t2 <: t1

As a important special case, if t1 and t2 describe exactly the
same set of values, we say they are structurally equivalent,
written t1 ≣ t2

Defining Structural Equivalence
Structural equivalence is defined inductively:

Atomic types are equivalent if they are identical

Constructed types are equivalent if they are the
same kind of construction and their components
are pairwise structurally equivalent.

e.g. record types {a:t1,b:t2}≣{a:t3,b:t4} iff
t1 ≣ t3 and t2 ≣ t4

similarly for unions, arrays, functions, etc.

Structural Subtyping
More generally, a given language might support

structural subtyping for atomic or constructed values,
e.g. (in imaginary language)

char <: int32 (if no representation change is needed)

{a:int, b:bool} <: {a:int} (records)

(int32 => {a:int,b:bool}) <:
(char => {a:int}) (functions)

Depends on details of each type construction in
specific language

Incorporating Subtyping
To add subtyping to language’s type system we add

a subsumption rule

We also extend the <: relation to a preorder

SUBTYPING RULES

We extend our language’s type system with a subsumption rule:

TE ! e : t′ t′ <: t
TE ! e : t

(Sub)

Now we must define the <: relation so that subsumption is a sound

typing rule.

We assume

t <: t
(Reflexive)

t′′ <: t′ t′ <: t

t′′ <: t
(Transitive)

PSU CS558 F’17 LECTURE 8B c© 1994–2017 ANDREW TOLMACH 11

SUBTYPING RULES

We extend our language’s type system with a subsumption rule:

TE ! e : t′ t′ <: t
TE ! e : t

(Sub)

Now we must define the <: relation so that subsumption is a sound

typing rule.

We assume

t <: t
(Reflexive)

t′′ <: t′ t′ <: t

t′′ <: t
(Transitive)

PSU CS558 F’17 LECTURE 8B c© 1994–2017 ANDREW TOLMACH 11

Type Names
Many languages let us define names for types

This is a convenient shorthand to avoid repeating long
type expressions

For structural type equivalence, we just unfold the
names before comparing types

But special care is needed for recursive type names

fun f(r:{x:int,y:bool,z:real}) : {x:int,y:bool,z:real} = …  
type t = {x:int,y:bool,z:real}  
fun f(r:t) : t = …

Standard ML

type t1 = {a:int,b:t1} type t2 = {a:int,b:t2}

Standard ML syntax

Name equivalence
A more powerful use of type names is to harness the

type-checker to help enforce program correctness by
defining sets of values according to their program-specific
meaning, e.g.

To get the desired feedback from the type checker, we
say types are equivalent only if they have the same name

Name equivalence implies structural equivalence but not
vice-versa (that’s the whole point!)

TYPE NAMES

Question of equivalence is more interesting if language has type names,

which arise for two main reasons:

• As a convenient shorthand to avoid giving the full type each time, e.g.

function f(x:int * bool * real) : int * bool * real = ...
type t = int * bool * real
function f(x:t) : t = ...

• As a way of improving program correctness by subdividing values into
types according to their meaning within the program, e.g.

type polar = { r:real, a:real }
type rect = { x:real, y:real }
function polar_add(x:polar,y:polar) : polar = ...
function rect_add(x:rect,y:rect) : rect = ...
var a:polar; c:rect;
a := (150.0,30.0) (* ok *)
polar_add(a,a) (* ok *)
c := a (* type error *)
rect_add(a,c) (* type error *)

Whole idea here is that some structurally equivalent are treated as

inequivalent.
PSU CS558 F’17 LECTURE 8B c© 1994–2017 ANDREW TOLMACH 4

made-up language

Pure Name Equivalence
Treating all named types as distinct is too restrictive

Different type names now seem too distinct; cannot
even convert from one form of real to another.

So most languages used mixed equivalence models

NAME EQUIVALENCE

Simplistic idea: Two types are equivalent iff they have the same name.

Supports polar/rect distinction.

But pure name equivalence is very restrictive, e.g.:

type ftemp = real
type ctemp = real
var x:ftemp, y:ftemp, z: ctemp;
x := y; (* ok *)
x := 10.0; (* probably ok *)
x := z; (* type error *)
x := 1.8 * z + 32.0; (* probably type error *)

Different types now seem too distinct; can’t even convert from one form

of real to another.

PSU CS558 F’17 LECTURE 8B c© 1994–2017 ANDREW TOLMACH 5

made-up language

C Type Equivalence
C uses structural equivalence for array and function

types, but name equivalence for struct, union, and
enum types, e.g.

A type defined by a typedef declaration is just an
abbreviation for an existing type.

C TYPE EQUIVALENCE

C uses structural equivalence for array and function types, but name

equivalence for struct, union, and enum types. For example:

char a[100];
void f(char b[]);
f(a); /* ok */

struct polar{float x; float y;};
struct rect{float x; float y;};
struct polar a;
struct rect b;
a = b; /* type error */

A type defined by a typedef declaration is just an abbreviation for an

existing type.

Note that this policy makes it easy to check equivalence of recursive

types, which can only be built using structs.

struct fred {int x; struct fred *y;} a;
struct bill {int x; struct fred *y;} b;
a = b; /* type error */

PSU CS558 F’17 LECTURE 8B c© 1994–2017 ANDREW TOLMACH 7

typedef struct polar Polar;
Polar c = a; /* ok */

C

C

Java Type Equivalence
Java uses nearly strict name equivalence, where names are

either:

One of 8 built-in primitive types (int,float,boolean,…), or

Declared classes or interfaces (reference types)

The only non-trivial type expressions that can appear in a
source program are array types, which are compared structurally,
using name equivalence for the ultimate element type.

Java has no mechanism for naming type abbreviations.

Java Subtyping
Java types form a name-based subtyping hierarchy

If class A extends class B, then A <: B

If class A implements interface I, then A <: I

If numeric type t can be coerced to numeric type u
without loss of precision, then t <: u

This may require the compiler to insert a run
time coercion from t to u

