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Semantics of first-class functions
What’s in the “value” of a first-class function f ? 

Roughly speaking, just f’s definition (its parameters 
and body expression) 

But nested functions can have free variables 
defined in an enclosing scope, and the behavior of 
the function depends on their values.  

 To find those values, it suffices to record the 
environment surrounding the declaration of f 

 Store this in a “closure” representing f 

But: must make sure locations used in environment 
stay live as long as closure does!
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Semantics of first-class functions
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 case class ClosureV(x:String,b:Expr,e:Env) extends Value
 def interpFun(x:String,b:Expr,cenv:Env):Value ={
   val fp = stack.getSp()
   interpE(cenv + (x -> StackFrameOffset(-4)),fp,b)
}
 def interpE(env:Env,fp:Int,expr:Expr):Value = expr match {
   case Fun(x,e) => ClosureV(x,e,makeLocsAbsolute(env))
   case App(f,e) => interpE(env,fp,f) match {
      case ClosureV(x,b,cenv) =>
        val offset = stack.push(fp,1)
        val v = interpE(env,fp,e)
        setLocation(fp,StackFrameOffset(offset),v) 
        val r = interpFun(x,b,cenv) 
        stack.pop(1)
        r
      case _ => throw InterpException (…)
      }
   case Let(x,e,b) => …
   …
 }
  

,

,

But using stack allocation 
for locals and parameters 

won't work!

Makes copy of env converting 
all stack locations to 
 absolute addresses



Trouble with first-class functions
Problem: if a closure value is returned, the 

environment may point to locations that have been 
popped from the stack!

 (let f (fun (x)(fun (y)(+ x y)))
      (let g (@ f 42) 
           …))

At this point, stack storage 
for x has been popped.  

So we’re in trouble if we call g.

You will explore this scenario in this week’s lab.  

Similar problems can occur if closure is stored into a heap 
data structure.



First-class functions need the heap
Bottom line: if we want the flexibility of fully first-class 

functions, we cannot store their free variables on the 
stack. 

 They must instead live in the heap. How to arrange 
this? 

Simple solution: just allocate all activation record data 
in the heap instead of the stack 

Rely heavily on garbage collection to deallocate and 
re-use them.  

(A few compilers do this.)



More refined solutions
One option: heap-allocate just those variables that are free in 

some closure expression.  

Usually done by adding an extra layer of boxing around such 
variables.  

(Some compilers do this.) 

Pure functional language solution: if the free “variables" are 
actually immutable, we can store copies of their values in a 
heap closure record.  

(Most functional language compilers do this. See this week's 
lab!) 

Again, suffices to copy just the free variables of the body.



The tyranny of the stack
Many older languages support functions as values, 

but not in fully first-class way—so that variables cans 
still be stored in the stack. 

For example, C allows fully first-class functions, but 
has no nested functions. Hence functions have no 
free variables and closures are not needed: function 
values are just simple code pointers.  

On the other hand, some languages with nested 
functions (e.g. Pascal, Modula, Ada) allow functions 
to be passed downwards as parameters to other 
functions, but not returned or stored.

“Downwards funargs”



Nested functions on the stack
In a language with only downwards funargs, if 

function f defines nested function g, it is impossible 
for g to be called after f has returned.  

So the compiler can use conventional stack storage, 
because every free variable of a function lives in an 
activation record that is still on the stack when the 
function might be called.  

Finding the values of those variables may be non-
trivial.  For example, compiler might need to 
maintain static links between frames.  (See 
textbook and this week's lab for more details.)

Why?



Closures vs. Objects
First-class function closures provide a way to 

package a function with some (relatively) fixed 
parameters (its free variables) 

Objects can be used to give a similar effect:

  case class MultiplesOf(n: Int) { 
    def apply(xs:List[Int]) : List[Int] = xs match {
      case Nil => Nil
      case (y::ys) => if (y%n == 0) y::apply(ys)
                      else apply(ys)
    }
  }

  val evens = MultiplesOf(2)
  val v = evens.apply(List(1,2,3,4)) // yields List(2,4)

More verbose 
than implicit closures

Can treat all first-class 
functions this way



Call-by-name using closures
Recall semantics of call-by-name: bind formal 

parameter to actual argument expression, with free 
variables resolved in caller 

We can implement this using “thunks”: first-class 
functions of zero arguments 

Shows that CBN introduces significant overhead

foo x y = if x = 0 then x else y
let x = 1000000 in foo 1 (factorial x)

foo x y = if x() = 0 then x() else y()
let x = 1000000 in
  foo (fun () => 1) (fun () => factorial x)



Pure Functional Programming
Idea: compose programs out of pure functions that have no 

side-effects 

Software engineering advantage: greatly improves 
modularity, because no hidden interactions between functions 

Pure functions won't interfere if evaluated in parallel 

Works well with call-by-name/need (in impure languages we 
need to worry about evaluation order) 

I/O is problematic, but Haskell has a good solution: program 
computes an I/O action which is then performed 

ML family is impure: no variables, but mutable heap 
structures (e.g. boxes) and explicit I/O



Recursion vs. iteration, again
Recall that tail-recursive functions can be converted 

into iterations. 

If our language has first class functions, we can code 
in a style where every call is a tail call. 

To show the idea, consider the familiar list length 
function: 

(We already know how to write this tail-recursively 
using an accumulating parameter.)

SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.
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Tail-calls are enough
Here’s another tail-recursive way to write length:

 def length (xs:List[Int]) : Int = {
    def klength (xs:List[Int],k:Int => Int) : Int = xs match {
      case Nil => k(0)
      case (_::xs1) => klength(xs1,r => k(1+r))
    }
    klength(xs,r => r)
  }

This rather odd code was constructed by giving klength an 
additional parameter, k, of type Int => Int. Instead of returning 
its “result” value, klength passes it downwards to k. 

The k parameter tells klength  “what to do next”  

Every call in klength is a tail-call, so we can evaluate klength 
without a stack!



Comparison of computations
length (1::2::Nil) →
1 + (length(2::Nil)) →
1 + (1 + length(Nil))) →
1 + (1 + 0)) →
1 + 1 →
2

length (1::2::Nil) →
klength(1::2::Nil, λr.r) →
klength(2::Nil, λr1.(λr.r) (1+r1)) →
klength(Nil,λr2.(λr1.(λr.r) (1+r1)) (1+r2)) →
(λr2.(λr1.(λr.r) (1+r1)) (1+r2)) (0) →
(λr1.(λr.r) (1+r1)) (1+0) →
(λr1.(λr.r) (1+r1)) (1) →
(λr.r)(1+1) →
(λr.r)(2) →
2

SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.
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 def length (xs:List[Int]) : Int = {
    def klength (xs:List[Int],k:Int => Int) : Int = xs match {
      case Nil => k(0)
      case (_::xs1) => klength(xs1,r => k(1+r))
    }
    klength(xs,r => r)
  }



Continuation-passing Style
Functions like k are (loosely) called continuations and 

programs written using them are said to be in (a form of) 
continuation-passing style (CPS). 

We might choose to write (parts of) programs explicitly 
because it makes it easier to express a particular algorithm, 
or because it clarifies the control structure of the program 

Note that CPS’ed Scala programs are just a subset of 
ordinary Scala programs that happen to make use of the 
(existing) enormous power of first-class functions. 

(Remarkably, we can systematically convert any functional 
language program into an equivalent CPS-style program. )


