
CS558 �
Programming Languages

Fall 2023

Lecture 6a

Andrew Tolmach

Portland State University

© 1994-2023

Functional Programming
An alternative paradigm to imperative programming

“First-class” functions

Emphasis on pure (“functional”) computations (side
effects restricted or prohibited)

ML

Haskell

Scala
Scheme

LISP

Top-level Functions
So far, we’ve been implicitly assuming that all
functions are declared separately at program top
level, e.g.

3

 (((f (x) (+ x 3))
 (g (y) (@ h (* y 2)))
 (h (z) (- (@ f z) 4))
)
 (+ (@ f 1) (@ g 2))
)

top-level
functions {

“main
program”
expression

all function
names are
globally in

scope

only variable in
function’s initial

scope is its
parameter

function names
can only appear in

applications

functions are
identified by name

in applications

functions may be
(mutually)
recursive

Almost Top-level Functions
Some languages (e.g. C) only allow top-level functions.

Other languages may have a top-level layer of modules
or objects, with functions just inside. E.g. in Scala:

4

 object LongLines {
 def processFile(filename: String, width: Int) {
 val source = Source.fromFile(filename)
 for (line <- source.getLines)
 processLine(filename, width, line)
 }
 private def processLine(filename: String,
 width: Int, line: String) {
 if (line.length > width)
 println(filename +": "+ line)
 }
 }
 }

Source: Programming in Scala, First Edition
by Martin Odersky, Lex Spoon, and Bill Venners

Nested Functions
 Many languages let us define local functions

 Inner function is only visible in scope of outer one, and
can access variables bound in outer one. In Scala:

5

 object LongLines {
 def processFile(filename: String, width: Int) {
 def processLine(line: String) {
 if (line.length > width)
 print(filename +": "+ line)
 }
 val source = Source.fromFile(filename)
 for (line <- source.getLines)
 processLine(line)
 }
 }
 } Source: Programming in Scala, First Edition

by Martin Odersky, Lex Spoon, and Bill Venners

First-class functions
What happens if we treat functions as just
another kind of value that we can manipulate in
expressions?

 Slogan: functions are “first-class” values (just
like integers or booleans or …) if they can be:

bound to variables

passed to or from other (“higher-order”)
functions

stored in data structures

defined by anonymous program literals
6

Functions as Parameters
 Allows us to parameterize by behaviors

 Particularly useful for working over collections

7

 def filter(p: Int => Boolean, xs:List[Int]):List[Int] = {
 xs match {
 case Nil => Nil
 case (y::ys) => if (p(y)) y::filter(p,ys)
 else filter(p,ys)
 }
 }

 def even(x:Int): Boolean = x%2==0
 def evens(xs:List[Int]) = filter(even,xs)
 val v = evens(List(1,2,3,4)) // yields List(2,4)

Anonymous functions
 No need to name a function that is used just once

 Typically as an actual parameter:

8

 def filter(p: Int => Boolean, xs:List[Int]):List[Int] ={
 xs match {
 case Nil => Nil
 case (y::ys) => if (p(y)) y::filter(p,ys)
 else filter(p,ys)
 }
 }

 def evens(xs:List[Int]) = filter(x => x%2==0,xs)

 val even = (x:Int) => x%2==0

 But ok anywhere:

anonymous functions are often

called “lambda expressions” 𝜆x.x%2==0

Nested functions
 A nested function (named or anonymous) can
reference parameters of the enclosing function

9

 def filter(p: Int => Boolean, xs:List[Int]):List[Int] = {
 def f(xs:List[Int]): List[Int] = xs match {
 case Nil => Nil
 case (y::ys) => if (p(y)) y::f(ys) else f(ys)
 }
 f(xs)
 }

 def multiplesOf(n:Int,xs:List[Int]) =
 filter(x => x%n==0, xs)

 def evens(xs:List[Int]) = multiplesOf(2,xs)
 def multsOf3(xs:List[Int]) = multiplesOf(3,xs)

Functions as results
 A function can also be returned as the result of a
function call. Here we use this to refactor filter:

10

 def filter(p: Int => Boolean): List[Int] => List[Int] = {
 def f(xs:List[Int]): List[Int] = xs match {
 case Nil => Nil
 case (y::ys) => if (p(y)) y::f(ys) else f(ys)
 }
 f _
 }

 def multiplesOf(n:Int): List[Int] => List[Int] =
 filter(x => x%n==0)

 val evens = multiplesOf(2)
 val v = evens(List(1,2,3,4)) // yields List(2,4)

Curried Functions
 Like filter, any multi-parameter function can be
coded as a nest of single-parameter functions
each returning a function

Such “Curried” functions can be either partially
or fully applied

Scala has extra syntactic sugar for them, e.g.

11

 val multsOf6 = compose(evens,multsOf3) _
 val v = multsOf6(List.range(0,7)) // yields List(0,6)
 val u = compose(evens,multsOf3)(List.range(0,7)) // same

 def compose[A](f: A=>A, g:A=>A)(x:A) = f(g(x))

Map
 Currying is especially useful when passing partially
applied functions to other higher-order functions

12

 def map[A,B] (f: A => B) : List[A] => List[B] = {
 def g(xs:List[A]) : List[B] = xs match {
 case Nil => Nil
 case (y::ys) => f(y)::g(ys)
 }
 g _
 }

 def pow(n:Int)(b:Int) : Int =
 if (n==0) 1 else b * pow (n-1)(b)

 val a = map (pow(3)) (List(1,2,3)) // gives List(1,8,27)

Abstracting another pattern

CAPTURING ANOTHER PATTERN OF ABSTRACTION

Consider the following problems:

Sum a list of integers:

def sum (l:List[Int]) : Int = l match {
case Nil => 0
case h::t => h + sum(t)
}

Multiply a list of integers:

def prod (l:List[Int]) : Int = l match {
case Nil => 1
case h::t => h * prod(t)
}

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 2

CAPTURING ANOTHER PATTERN OF ABSTRACTION

Consider the following problems:

Sum a list of integers:

def sum (l:List[Int]) : Int = l match {
case Nil => 0
case h::t => h + sum(t)
}

Multiply a list of integers:

def prod (l:List[Int]) : Int = l match {
case Nil => 1
case h::t => h * prod(t)
}

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 2

THE PATTERN CONTINUES...

Calculate the length of a list (of any type):

def len[A](l:List[A]) : Int = l match {
case Nil => 0
case _::t => 1 + len(t)
}

Copy a list (of any type):

def copy[A](l:List[A]) : List[A] = l match {
case Nil => Nil
case h::t => h::copy(t)
}

Query: How does copy differ from the identity function (x => x) ?

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 3

THE PATTERN CONTINUES...

Calculate the length of a list (of any type):

def len[A](l:List[A]) : Int = l match {
case Nil => 0
case _::t => 1 + len(t)
}

Copy a list (of any type):

def copy[A](l:List[A]) : List[A] = l match {
case Nil => Nil
case h::t => h::copy(t)
}

Query: How does copy differ from the identity function (x => x) ?

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 3

sum of a list

product of a list

length of a list

copy of a list

Folding over listsFOLDS

We can abstract over the common inductive pattern displayed by these

examples:

def foldr[A,B] (c: (A,B) => B, n:B) (l:List[A]) : B = l match {
case Nil => n
case h::t => c (h,foldr(c,n)(t))
}

val sum = foldr[Int,Int] ((x,y) => x+y,0) _
val prod = foldr[Int,Int] (_*_,1) _
def len[A] = foldr[A,Int] ((_,y) => 1+y,0) _
def copy[A] = foldr[A,List[A]] (_::_,Nil) _

Function foldr computes a value working from the tail of the list to the

head (from right to left). Argument n is the value to return for the empty

list. Argument c is the function to apply to each element and the

previously computed result.

The foldr function is Curried to make it convenient to partially apply it.

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 4

Compute a value of type B

from a list of values of type A

working from tail to head

(i.e. from right to left)

Value to return for empty list
Function to apply to each element

and previously computed result

Curried for convenient

application

FOLDS

We can abstract over the common inductive pattern displayed by these

examples:

def foldr[A,B] (c: (A,B) => B, n:B) (l:List[A]) : B = l match {
case Nil => n
case h::t => c (h,foldr(c,n)(t))
}

val sum = foldr[Int,Int] ((x,y) => x+y,0) _
val prod = foldr[Int,Int] (_*_,1) _
def len[A] = foldr[A,Int] ((_,y) => 1+y,0) _
def copy[A] = foldr[A,List[A]] (_::_,Nil) _

Function foldr computes a value working from the tail of the list to the

head (from right to left). Argument n is the value to return for the empty

list. Argument c is the function to apply to each element and the

previously computed result.

The foldr function is Curried to make it convenient to partially apply it.

PSU CS558 F’15 LECTURE 4B c© 1994–2015 ANDREW TOLMACH 4

Scala short-hand for

(x,y) => x*y

Visualizing folds
We can view foldr(c,n)(l) as replacing each ::

constructor in l by c and the Nil constructor by n

x1 :: (x2 :: (… :: (xn :: Nil)…))

x1 + (x2 + (… + (xn + 0)…))

l =

foldr(_+_,0)(l)=

We can also define a foldl that accumulates a value from
the left; this will sometimes be more efficient

In some languages fold is called reduce, because we
“reduce” a list of values to a single value. Similar ideas appear
in “map-reduce” frameworks for organizing massively parallel
computations.

