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Iteration into Recursion
Any iteration can be written as a recursion, e.g.

ITERATION VS. RECURSION

Any iteration can be written as a recursion.

For example, in Scala:

while (c) {e}

is equivalent to

def f(b:Boolean):Unit =
if (b) {

e;
f(c)

}
f(c)

where we assume that the variables used by c and e are in scope.

When can we do the converse? It turns out that a recursion can be

rewritten as an iteration (without needing any extra storage) whenever all

the recursive calls are in tail position. To be in tail position, the call must

be the last thing performed by the caller before it itself returns.
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assuming the variables used  
by c and e are in scope



Recursion into iteration?
When can we do the converse?  

A recursion can be rewritten as an iteration (without needing 
any extra storage) whenever all the recursive calls are in tail 
position 

Call in tail position iff it is the last thing performed by the 
caller before it itself returns 

 This rewrite is often worthwhile, in order to avoid pushing a 
stack activation frame for each recursive call (lowers total 
stack needed and eliminates push/pop time) 

A decent compiler can turn tail-calls into iterations 
automatically. This is essential for functional languages, 
which use recursion heavily, but is useful even for imperative 
ones.



Scala list tail-call examples
SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.
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Systematic Removal of Recursion
But what about general (non-tail) recursion? 

One way to get a better appreciation for how 
recursion is implemented is to see what is required 
to get rid of it 

Additional explicitly-allocated memory space is 
needed!



ORIGINAL PROGRAM

typedef struct tree *Tree;
struct tree {

int value;
Tree left, right;

};

void printtree(Tree t) {
if (t) {
print(t->value);
printtree(t->left);
printtree(t->right);

}
}
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(Adapted from R. Sedgewick, Algorithms, 2nd ed.)

code in C



STEP 1

Remove tail-recursion.

void printtree(Tree t) {
top:

if (t) {
print(t->value);
printtree(t->left);
t = t->right;
goto top;

}
}
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STEP 2

Use explicit stack to replace non-tail recursion. Simulate behavior of

compiler by pushing local variables and return address onto the stack

before call and popping them back off the stack after call.

Assume this stack interface, specialized to use Tree as the stack element

type.

Stack empty;
void push(Stack s,Tree t);
Tree pop(Stack s);
bool isEmpty(Stack s);

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 22



STEP 2 (CONT.)

Here there is only one local variable (t) and the return address is always

the same, so there’s no need to save it.
void printtree(Tree t) {

Stack s = empty;
top:

if (t) {
print(t->value);
push(s,t);
t = t->left;
goto top;

retaddr:
t = t->right;
goto top;

}
if (!(isEmpty(s))) {
t = pop(s);
goto retaddr;

}
}
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STEP 3

Simplify by:

• Rearranging to avoid the retaddr label.

• Pushing right child instead of parent on stack.

• Replacing first goto with a while loop.

void printtree(Tree t) {
Stack s = empty;

top:
while (t) {
print(t->value);
push(s,t->right);
t = t->left;

}
if (!(isEmpty(s))) {
t = pop(s);
goto top;

}
}
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STEP 4

Rearrange some more to replace outer goto with another while loop.

(This is slightly wasteful, since an extra push, stackempty check and pop

are performed on root node.)

void printtree(Tree t) {
Stack s = empty;
push(s,t);
while(!(isEmpty(s))) {
t = pop(s);
while (t) {

print(t->value);
push(s,t->right);
t = t->left;

}
}

}
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STEP 5

A more symmetric version can be obtained by pushing and popping the

left children too.

Compare this to the original recursive program.

void printtree(Tree t) {
Stack s = empty;
push(s,t);
while(!(isEmpty(s))) {
t = pop(s);
if (t) {

print(t->value);
push(s,t->right);
push(s,t->left);

}
}

}
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STEP 6

We can also test for empty subtrees before we push them on the stack

rather than after popping them.

void printtree(Tree t) {
Stack s = empty;
if (t) {
push(s,t);
while(!(isEmpty(s))) {

t = pop(s);
print(t->value);
if (t->right)

push(s,t->right);
if (t->left)

push(s,t->left);
}

}
}
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