
CS558
Programming Languages

Fall 2023
Lecture 4c

Andrew Tolmach
Portland State University

© 1994-2023

Iteration into Recursion
Any iteration can be written as a recursion, e.g.

ITERATION VS. RECURSION

Any iteration can be written as a recursion.

For example, in Scala:

while (c) {e}

is equivalent to

def f(b:Boolean):Unit =
if (b) {

e;
f(c)

}
f(c)

where we assume that the variables used by c and e are in scope.

When can we do the converse? It turns out that a recursion can be

rewritten as an iteration (without needing any extra storage) whenever all

the recursive calls are in tail position. To be in tail position, the call must

be the last thing performed by the caller before it itself returns.

PSU CS558 F’15 LECTURE 4 c© 1994–2015 ANDREW TOLMACH 9

Scala
is equivalent to

ITERATION VS. RECURSION

Any iteration can be written as a recursion.

For example, in Scala:

while (c) {e}

is equivalent to

def f(b:Boolean):Unit =
if (b) {

e;
f(c)

}
f(c)

where we assume that the variables used by c and e are in scope.

When can we do the converse? It turns out that a recursion can be

rewritten as an iteration (without needing any extra storage) whenever all

the recursive calls are in tail position. To be in tail position, the call must

be the last thing performed by the caller before it itself returns.

PSU CS558 F’15 LECTURE 4 c© 1994–2015 ANDREW TOLMACH 9

assuming the variables used
by c and e are in scope

Recursion into iteration?
When can we do the converse?

A recursion can be rewritten as an iteration (without needing
any extra storage) whenever all the recursive calls are in tail
position

Call in tail position iff it is the last thing performed by the
caller before it itself returns

 This rewrite is often worthwhile, in order to avoid pushing a
stack activation frame for each recursive call (lowers total
stack needed and eliminates push/pop time)

A decent compiler can turn tail-calls into iterations
automatically. This is essential for functional languages,
which use recursion heavily, but is useful even for imperative
ones.

Scala list tail-call examples
SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.

PSU CS558 F’15 LECTURE 4 c© 1994–2015 ANDREW TOLMACH 10

SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.

PSU CS558 F’15 LECTURE 4 c© 1994–2015 ANDREW TOLMACH 10

SCALA TAIL-CALL EXAMPLES

List operations can often be made tail-recursive in this way:

def find (y:Int,xs:List[Int]):Boolean = xs match {
case Nil => false
case (x::xs1) => (x == y) || find(y,xs1) // tail-recursive
}

def length (xs:List[Int]):Int = xs match {
case Nil => 0
case (_::xs1) => 1 + length(xs1) // not tail-recursive
}

def length_tr (xs:List[Int]):Int = {
// use an auxiliary function with an accumulating parameter
def f (xs:List[Int],len:Int):Int = xs match {

case Nil => len
case (_::xs1) => f (xs1,len+1) // tail-recursive
}

f(xs,0)
}

A decent compiler can turn tail-calls into iterations, thus saving the cost

of pushing an activation frame on the stack. This is essential for

functional languages, and useful even for imperative ones.

PSU CS558 F’15 LECTURE 4 c© 1994–2015 ANDREW TOLMACH 10

Systematic Removal of Recursion
But what about general (non-tail) recursion?

One way to get a better appreciation for how
recursion is implemented is to see what is required
to get rid of it

Additional explicitly-allocated memory space is
needed!

ORIGINAL PROGRAM

typedef struct tree *Tree;
struct tree {

int value;
Tree left, right;

};

void printtree(Tree t) {
if (t) {
print(t->value);
printtree(t->left);
printtree(t->right);

}
}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 20

(Adapted from R. Sedgewick, Algorithms, 2nd ed.)

code in C

STEP 1

Remove tail-recursion.

void printtree(Tree t) {
top:

if (t) {
print(t->value);
printtree(t->left);
t = t->right;
goto top;

}
}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 21

STEP 2

Use explicit stack to replace non-tail recursion. Simulate behavior of

compiler by pushing local variables and return address onto the stack

before call and popping them back off the stack after call.

Assume this stack interface, specialized to use Tree as the stack element

type.

Stack empty;
void push(Stack s,Tree t);
Tree pop(Stack s);
bool isEmpty(Stack s);

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 22

STEP 2 (CONT.)

Here there is only one local variable (t) and the return address is always

the same, so there’s no need to save it.
void printtree(Tree t) {

Stack s = empty;
top:

if (t) {
print(t->value);
push(s,t);
t = t->left;
goto top;

retaddr:
t = t->right;
goto top;

}
if (!(isEmpty(s))) {
t = pop(s);
goto retaddr;

}
}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 23

STEP 3

Simplify by:

• Rearranging to avoid the retaddr label.

• Pushing right child instead of parent on stack.

• Replacing first goto with a while loop.

void printtree(Tree t) {
Stack s = empty;

top:
while (t) {
print(t->value);
push(s,t->right);
t = t->left;

}
if (!(isEmpty(s))) {
t = pop(s);
goto top;

}
}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 24

STEP 4

Rearrange some more to replace outer goto with another while loop.

(This is slightly wasteful, since an extra push, stackempty check and pop

are performed on root node.)

void printtree(Tree t) {
Stack s = empty;
push(s,t);
while(!(isEmpty(s))) {
t = pop(s);
while (t) {

print(t->value);
push(s,t->right);
t = t->left;

}
}

}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 25

STEP 5

A more symmetric version can be obtained by pushing and popping the

left children too.

Compare this to the original recursive program.

void printtree(Tree t) {
Stack s = empty;
push(s,t);
while(!(isEmpty(s))) {
t = pop(s);
if (t) {

print(t->value);
push(s,t->right);
push(s,t->left);

}
}

}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 26

STEP 6

We can also test for empty subtrees before we push them on the stack

rather than after popping them.

void printtree(Tree t) {
Stack s = empty;
if (t) {
push(s,t);
while(!(isEmpty(s))) {

t = pop(s);
print(t->value);
if (t->right)

push(s,t->right);
if (t->left)

push(s,t->left);
}

}
}

PSU CS558 F’16 LECTURE 4 c© 1994–2016 ANDREW TOLMACH 27

