
CS558
Programming Languages

Fall 2023
Lecture 4b

Andrew Tolmach
Portland State University

© 1994-2023

Procedures and Functions
Procedures have long history as essential programming tool

Low-level view: subroutines let us avoid duplicating
frequently-used code

Higher-level view: procedural abstraction lets us divide
programs into components with hidden internals

Procedural abstractions are parameterized over values and
(sometimes) types

A function is just a procedure that returns a result (or,
conversely, a procedure is just a function whose result we
don’t care about).

Procedure Activation Data
Each invocation of procedure is specialized by associated activation

data, such as

the actual values corresponding to the formal parameters of the
procedure

locations allocated for the values of local variables

the return address in the caller

Activation data lives from the time procedure is called until the time it
returns

If one procedure calls another, directly or indirectly, their activation
data must be kept separate, because lifetimes overlap

In particular, each recursive invocation needs new activation data

ACTIVATION STACKS

In most languages, activation data can be stored on a stack, and we
speak of pushing and popping activation frames from the stack, which is
a very efficient way of managing local data.
A typical activation stack, shown just before inner call to f returns.

Program:

int z = y+y;
if (z > 0)
 z = f(z,0);
return z+y;

}
void main() {

int w = 10;
w = f(w,w);

}

int f(int x, int y){

fp

ret addr

saved fp

ret addr

w

x

y

z

x

y

z

10

10

10

line 10

20

20

0

line 5

0

saved fp

args

locals

locals

args

locals

frame for f

frame for f

frame for main

tos

(stack grows)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 4

C
10
10
10

line 9
20
20
0

line 4
0

frame for main

frame for f

frame for f

locals

locals

locals

args

args
x
y

z

w

ret addr

ret addr

x
y

z

Activation Stacks
In most languages, activation data can be stored in

frames, which are pushed and popped on the stack

1

2

3

4

5

7

6

8

9

10sp →
sp →

sp →
sp →
sp →

sp →
sp →

sp →

sp →

sp →

···

Calling conventions
In compiled language implementations, we want to be

able to generate the code for procedures separately
from the code for their applications

 e.g. procedure may live in a pre-compiled library

Requires a calling convention between caller and callee

 e.g. caller places parameter values on the stack in a
fixed order, and callee looks for them there

In an interpreter, where caller and callee are visible at
the same time, it is easy to be imprecise about this,
but we will try to build a careful model in the labs

Procedure Parameter Passing
When we apply a function in an imperative language, the formal

parameters get bound to locations containing values

How is this done and which locations are used?

Do we pass addresses or contents of variables from the
caller?

How do we pass actual values that aren’t variables?

What does it mean to pass a large value like an array?

Two main approaches: call-by-value(CBV) and call-by-reference
(CBR).

Also call-by-name/need(CBN).

Call-by-value
Each actual parameter is evaluated to a value before

call

On entry to function, each formal parameter is bound to
a freshly-allocated location, and the actual parameter
value is copied into that location

Much like processing declaration and initialization of
a local variable

Semantics are just like assignment of actual expression
to formal parameter

Simple; easy to understand!

Issues with call-by-value
Updating a formal parameter doesn’t affect actuals

in the caller.

Usually a good thing!

But sometimes not what we want

PROBLEMS WITH CALL-BY-VALUE (2)

• Cannot affect calling environment directly.

Example: calls to swap have no effect:

void swap(int i,int j) {
int t;
t = i ; i = j; j = t;

}
...
swap(a[p],a[q]);

(Of course, perhaps this is usually a good thing!)

• Can at best return only one result (as a value), though this might be a

record.

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 29

call has no effect on a

C

More issues
Can be inefficient for large unboxed values, e.g. C
structs (records):

PROBLEMS WITH CALL-BY-VALUE (1)

• Can be inefficient for large unboxed values:

Example (C): Calls to dotp copy 20 doubles

typedef struct {double a1,a2,...,a10;}
vector;

double dotp(vector v, vector w) {
return v.a1 * w.a1 + v.a2 * w.a2 + ...

+ v.a10 * w.a10;
}
vector v1,v2;
double d = dotp(v1,v2);

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 28

C

Call to dotp copies 20 doubles

Call-by-reference
Pass a pointer to the existing location of each actual

parameter

Within function, references to formal parameter are
indirected through this pointer — so parameter can be
dereferenced to get the value, but can also be updated

If actual argument doesn’t have a location (e.g. is an
expression (x+3)) then either

evaluate it into a temporary location and pass address
of temporary,or

treat as an error

Issues with Call-by-reference
Now procedures like swap work fine!

Can also return values from procedure by assigning
to parameters

Lots of opportunity for aliasing problems, e.g.

CALL-BY-REFERENCE

• Pass the existing location of each actual parameter.

• On entry, the formal parameter is bound directly to this location. Thus, it

can be dereferenced to get the value, but it can also be updated.

• If actual argument doesn’t have a location (e.g., (x + 3)), either:

- Evaluate it into a temporary location and pass address of temporary, or

- Treat as an error.

• Now swap, etc., work fine!

• Lots of opportunity for aliasing problems, e.g.,

PROCEDURE matmult(a,b,c: MATRIX)
... (* sets c := a * b *)

matmult(a,b,a) (* oops! *)

• Call-by-value-result (a.k.a. copy-restore) addresses this problem, but

has other drawbacks.

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 30

overwrites parts of argument as
it computes result

Hybrid methods
In Pascal, Ada, and C++, programmer can specify

(in the procedure header) for each parameter
whether to use CBV or CBR

 C always uses CBV, but programmers can take the
address of a variable explicitly, and pass that to
obtain CBR-like behavior:

HYBRID METHODS; RECORDS AND ARRAYS

How might we combine the simplicity of call-by-value with the efficiency

of call-by-reference, especially for large unboxed values?

• In Pascal, Ada, and similar languages, where records and arrays are

both unboxed, the programmer can specify (in the procedure header) for

each parameter whether to use call-by-value or call-by-reference.

• In C/C++, record (struct or class) values are unboxed, but arrays are

boxed. C++ allows per-argument calling mode specification. C always

uses call-by-value, but programmers can take the address of a variable

explicitly, and pass that to obtain CBR-like behavior:

swap(int *a, int *b) {
int t;
t = *a; *a = *b; *b = t; }

swap (&a[p],&a[q]);

Of course, it is the programmer’s responsibility to make sure that the

address remains valid (especially when it is returned from a function).

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 31

Values can be References
In many modern languages, like Java or Python,

both records (objects) and arrays are always boxed,
so values of these types are already pointers (or
references)

Thus, even if the language uses CBV, the values
that are passed are actually references: calls don’t
cause any actual copying of the large values

But it is a mistake (which some otherwise good
authors make) to say that these languages use “call-
by-reference” (If they did, they would be passing a
reference to the reference!)

 One simple way to give semantics to procedure
calls is say they behave “as if” the procedure body
were textually substituted for the call, substituting
actual parameters for formal ones.

This is very similar to macro-expansion, which really
does this substitution (statically)

Substitution and macros
SUBSTITUTION

One simple way to give semantics to procedure calls is to say they should
behave as if the procedure body was textually substituted for the call,
with the actual parameters substituted for the formal ones.
• This is very similar to macro-expansion, which really does this subsitu-
tion (statically). E.g (in C):

#define swap(x,y) {int t;t = x;x = y;y = t;}
...
swap(a[p],a[q]);

• It even makes sense for recursive procedures (though of course it
cannot be implemented by static substitution in this case).
• BUT blind substitution is dangerous because of possible “variable cap-
ture,” e.g.,

swap(a[t],a[q])

expands to
{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 13

{int t; t = a[p]; a[p] = a[q]; a[q] = t;}

expands to
C

Avoiding capture
Blind substitution is dangerous!

SUBSTITUTION

One simple way to give semantics to procedure calls is to say they should
behave as if the procedure body was textually substituted for the call,
with the actual parameters substituted for the formal ones.
• This is very similar to macro-expansion, which really does this subsitu-
tion (statically). E.g (in C):

#define swap(x,y) {int t;t = x;x = y;y = t;}
...
swap(a[p],a[q]);

• It even makes sense for recursive procedures (though of course it
cannot be implemented by static substitution in this case).
• BUT blind substitution is dangerous because of possible “variable cap-
ture,” e.g.,

swap(a[t],a[q])

expands to
{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 13

SUBSTITUTION

One simple way to give semantics to procedure calls is to say they should
behave as if the procedure body was textually substituted for the call,
with the actual parameters substituted for the formal ones.
• This is very similar to macro-expansion, which really does this subsitu-
tion (statically). E.g (in C):

#define swap(x,y) {int t;t = x;x = y;y = t;}
...
swap(a[p],a[q]);

• It even makes sense for recursive procedures (though of course it
cannot be implemented by static substitution in this case).
• BUT blind substitution is dangerous because of possible “variable cap-
ture,” e.g.,

swap(a[t],a[q])

expands to
{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 13

expands to

SUBSTITUTION

One simple way to give semantics to procedure calls is to say they should
behave as if the procedure body was textually substituted for the call,
with the actual parameters substituted for the formal ones.
• This is very similar to macro-expansion, which really does this subsitu-
tion (statically). E.g (in C):

#define swap(x,y) {int t;t = x;x = y;y = t;}
...
swap(a[p],a[q]);

• It even makes sense for recursive procedures (though of course it
cannot be implemented by static substitution in this case).
• BUT blind substitution is dangerous because of possible “variable cap-
ture,” e.g.,

swap(a[t],a[q])

expands to
{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 13
Nonsense!

We say that t has been captured by the declaration in the
macro block

One solution is to note that names of local variables
are not important, e.g. we can rename to

Call-by-name can be thought of as “substitution with
renaming where necessary”

On real machines, CBN is implemented by passing to
the function the AST for actual argument + values of its
free variables

This makes CBN much less efficient to implement
than CBV or CBR. (We may see more later.)

Call-by-name (CBN)
CALL-BY-NAME (CBN)

• Here t is “captured” by the declaration in the macro, and is undefined at
its first use.

• Note that name of local variable is not important: it could be renamed:

{int u; u = a[t]; a[t] = a[q]; a[q] = u;}

• Call-by-name (first proposed in Algol60) can be thought of as
“substitution with renaming where necessary.”

• In practice, call-by-name is implemented by binding any free variables
in arguments at the point of call (rather than the point of use).

• This makes CBN much less efficient to implement than CBV or CBR.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 14

Call-by-need
A very useful feature of call-by-name is that

arguments are evaluated only if needed

As a further refinement, “pure” functional languages
typically use call-by-need (or lazy) evaluation, in
which arguments are evaluated at most once:

CALL-BY-NEED

• If language has no mutable variables (as in “pure” functional
languages), call-by-name gives a substitution gives a beautifully simple
semantics for procedure calls.

• Arguments are evaluated only if needed.

foo x y = if x > 0 then x else y

foo 1 (factorial 1000000)

• As a further refinement, pure functional languages typically use call-
by-need (or lazy) evaluation, in which arguments are evaluated at most
once.

foo x y = if x > 0 then x else y * y

foo (-1) (factorial 1000000)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 16

Haskell

CALL-BY-NEED

• If language has no mutable variables (as in “pure” functional
languages), call-by-name gives a substitution gives a beautifully simple
semantics for procedure calls.

• Arguments are evaluated only if needed.

foo x y = if x > 0 then x else y

foo 1 (factorial 1000000)

• As a further refinement, pure functional languages typically use call-
by-need (or lazy) evaluation, in which arguments are evaluated at most
once.

foo x y = if x > 0 then x else y * y

foo (-1) (factorial 1000000)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 16

avoids expensive computation

avoids expensive recomputation

