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Formal Operational Semantics
So far, we’ve presented operational semantics using 

interpreters: precise and executable, but verbose 
and too concrete 

One alternative: describe semantics using state 
transition judgments 

FORMAL OPERATIONAL SEMANTICS

So far, we’ve presented operational semantics using interpreters. These

have the advantage of being precise and executable. But they are not

ideally compact or abstract.

Another way to present operational semantics is using state transition

judgments, for appropriately defined machine states.

For example, consider a simple language of imperative expressions, in

which variables must be defined before use, using a let construct.

exp := var | int
| ’(’ ’+’ exp exp ’)’
| ’(’ ’let’ var exp exp ’)’
| ’(’ ’:=’ var exp ’)’
| ’(’ ’if’ exp exp exp ’)’
| ’(’ ’while’ exp exp ’)’
| etc.

Informally, the meaning of (let x e1 e2) is: evaluate e1 to a value v1,

create a new store location l bound to x and initialized to v1, and evaluate

e2 in the resulting environment and store.
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Example 
language



State machine transition judgments

STATE MACHINE

To evaluate this language, we choose a machine state consisting of:

• the current environment E, which maps each in-scope variable to a

location l.

• the current store S, which maps each location l to an integer value v.

• the current expression e, to be evaluated.

We give the state transitions in the form of judgments:

〈e, E, S〉 ⇓ 〈v, S′〉

Intuitively, this says that evaluating expression e in environment E and

store S yields the value v and the (possibly) changed store S′.
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current expression result value

final store 
maps locations l to values v

current environment 
maps vars x to locations l

initial store 
maps locations l to values v

Evaluating expression e in environment E and store S yields value v 
and (possibly) changed store Sʹ 



Evaluation by inference
To describe the machine’s operation, we give rules of 

inference that say when a judgment can be derived from 
judgments about sub-expressions 

We can view evaluation of the program as the process 
of building an inference tree 

Notation has similarities to axiomatic semantics: idea of 
derivation is that same, but contents of judgments is 
different

OPERATIONAL SEMANTICS BY INFERENCE

To describe the machine’s operation, we give rules of inference that

state when a judgment can be derived from judgments about

sub-expressions.

The form of a rule is

premises

conclusion
(Name of rule)

We can view evaluation of the program as the process of building an

inference tree.

This notation has similarities to axiomatic semantics: the notion of

derivation is essentially the same, but the content of judgments is

different.
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ENVIRONMENTS AND STORES, FORMALLY

• We write E(x) means the result of looking up x in environment E. (This

notation is because an environment is like a function taking a name as

argument and returning a meaning as result.)

• We write E + {x !→ v} for the environment obtained from existing

environment E by extending it with a new binding from x to v. If E
already has a binding for x, this new binding replaces it.

The domain of an environment, dom(E), is the set of names bound in E.

Analogously with environments, we’ll write

• S(l) to mean the value at location l of store S

• S + {l !→ v} to mean the store obtained from store S by extending (or

updating) it so that location l maps to value v.

• dom(S) for the set of locations bound in store S.

Also, we’ll write

• S − {l} to mean the store obtained from store S by removing the

binding for location l.
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EVALUATION RULES (1)

l = E(x) v = S(l)

〈x,E, S〉 ⇓ 〈v, S〉
(Var)

〈i, E, S〉 ⇓ 〈i, S〉
(Int)

〈e1, E, S〉 ⇓ 〈v1, S′〉 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(+ e1 e2), E, S〉 ⇓ 〈v1 + v2, S′′〉
(Add)

〈e1, E, S〉 ⇓ 〈v1, S′〉 l /∈ dom(S′)

〈e2, E + {x %→ l}, S′ + {l %→ v1}〉 ⇓ 〈v2, S′′〉

〈(let x e1 e2), E, S〉 ⇓ 〈v2, S′′ − {l}〉
(Let)

〈e, E, S〉 ⇓ 〈v, S′〉 l = E(x)

〈(:= x e), E, S〉 ⇓ 〈v, S′ + {l %→ v}〉
(Assgn)
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EVALUATION RULES (2)

〈e1, E, S〉 ⇓ 〈v1, S′〉 v1 $= 0 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v2, S′′〉
(If-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉 〈e3, E, S′〉 ⇓ 〈v3, S′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v3, S′′〉
(If-zero)

〈e1, E, S〉 ⇓ 〈v1, S′〉 v1 $= 0 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(while e1 e2), E, S′′〉 ⇓ 〈v3, S′′′〉

〈(while e1 e2), E, S〉 ⇓ 〈v3, S′′′〉
(While-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉

〈(while e1 e2), E, S〉 ⇓ 〈0, S′〉
(While-zero)
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Example Derivation Treesh10, ;, ;i + h10, ;i (Int)

h21, {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 10}i (Int)

h(:= x 21), {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 21}i (Assgn) hx, {x 7! L1}, {L1 7! 21}i + h21, {L1 7! 21}i (Var)

h(+ (:= x 21) x), {x 7! L1}, {L1 7! 10}i + h42, {L1 7! 21}i (Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

h10, ;, ;i + h10, ;i (Int)

h21, E1, S1i + h21, S1i
(Int)

h(:= x 21), E1, S1i + h21, S2i
(Assgn) hx, E1, S2i + h21, S2i

(Var)

h(+ (:= x 21) x), E1, S1i + h42, S2i
(Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

where E1 = {x 7! L1}, S1 = {L1 7! 10}, S2 = {L1 7! 21}.

1

h10, ;, ;i + h10, ;i (Int)

h21, {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 10}i (Int)

h(:= x 21), {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 21}i (Assgn) hx, {x 7! L1}, {L1 7! 21}i + h21, {L1 7! 21}i (Var)

h(+ (:= x 21) x), {x 7! L1}, {L1 7! 10}i + h42, {L1 7! 21}i (Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

h10, ;, ;i + h10, ;i (Int)

h21, E1, S1i + h21, S1i
(Int)

h(:= x 21), E1, S1i + h21, S2i
(Assgn) hx, E1, S2i + h21, S2i

(Var)

h(+ (:= x 21) x), E1, S1i + h42, S2i
(Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

where E1 = {x 7! L1}, S1 = {L1 7! 10}, S2 = {L1 7! 21}.

h�1, ;, ;i + h�1, ;i
(Int)

hx, E1, S1i + h�1, S1i
(Var)

hx, E1, S1i + h�1, S1i
(Var)

h1, E1, S1i + h1, S1i
(Int)

h(+ x 1), E1, S1i + h0, S1i
(Add)

h(:= x (+ x 1)), E1, S1i + h0, S2i
(Assgn)

hx, E1, S2i + h0, S2i
(Var)

h(while := x (+ x 1)), E1, S2i + h0, S2i
(While-zero)

h(while (:= x (+ x 1))), E1, S1i + h0, S2i
(While-nzero)

h(let x -1 (while (:= x (+ x 1)))), ;, ;i + h0, ;i
(Let)

where E1 = {x 7! L1}, S1 = {L1 7! �1}, S2 = {L1 7! 0}.

hx, E1, S1i + h�1, S1i
(Var)

hx, E1, S1i + h�1, S1i
(Var) h1, E1, S1i + h1, S1i

(Int)

h(+ x 1), E1, S1i + h0, S1i
(Add)

h(:= x (+ x 1)), E1, S1i + h0, S2i
(Assgn)

hx, E1, S2i + h0, S2i
(Var)

h(while x (:= x (+ x 1))), E1, S2i + h0, S2i
(While-zero)

h(while x (:= x (+ x 1))), E1, S1i + h0, S2i
(While-nzero)

where E1 = {x 7! L1}, S1 = {L1 7! �1}, S2 = {L1 7! 0}.

1



About the rules
As usual in inference systems, a rule only applies if all 

the premises above the line can be shown 

Structure of rules guarantees that at most one rule is 
applicable at any point 

Store relationships constrain the order of evaluation of 
premises  

(For simplicity here, we use just a single global store) 

If no rules apply, the evaluation gets stuck; this 
corresponds to an (unchecked) runtime error



Rules vs. Interpreter
We can view a recursive interpreter as implementing a bottom-up 

exploration of the inference tree 

A function like  

returns a value v and has side effects on a global store store such that   

The implementation of eval dispatches on the syntactic form of e, 
choosing the appropriate rule, 

and makes recursive calls on eval corresponding to the premises of 
that rule. 

Question: How deep can the derivation tree get?

NOTES ON THE RULES

• The structure of the rules guarantees that at most one rule is applicable

at any point.

• The store relationships constrain the order of evaluation.

• If no rules are applicable, the evaluation gets stuck; this corresponds

to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up

exploration of the inference tree. A function like

Value eval(Exp e, Env env) { .... }

returns a value v and has side effects on a global store such that

〈e, env, storebefore〉 ⇓ 〈v, storeafter〉

The implementation of eval dispatches on the syntactic form of e,

chooses the appropriate rule, and makes recursive calls on eval

corresponding to the premises of that rule.

Question: how deep can the derivation tree get?
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NOTES ON THE RULES

• The structure of the rules guarantees that at most one rule is applicable

at any point.

• The store relationships constrain the order of evaluation.

• If no rules are applicable, the evaluation gets stuck; this corresponds

to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up

exploration of the inference tree. A function like

Value eval(Exp e, Env env) { .... }

returns a value v and has side effects on a global store such that

〈e, env, storebefore〉 ⇓ 〈v, storeafter〉

The implementation of eval dispatches on the syntactic form of e,

chooses the appropriate rule, and makes recursive calls on eval

corresponding to the premises of that rule.

Question: how deep can the derivation tree get?
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