
CS558
Programming Languages

Fall 2023
Lecture 4a

Andrew Tolmach
Portland State University

© 1994-2023

Formal Operational Semantics
So far, we’ve presented operational semantics using

interpreters: precise and executable, but verbose
and too concrete

One alternative: describe semantics using state
transition judgments

FORMAL OPERATIONAL SEMANTICS

So far, we’ve presented operational semantics using interpreters. These

have the advantage of being precise and executable. But they are not

ideally compact or abstract.

Another way to present operational semantics is using state transition

judgments, for appropriately defined machine states.

For example, consider a simple language of imperative expressions, in

which variables must be defined before use, using a let construct.

exp := var | int
| ’(’ ’+’ exp exp ’)’
| ’(’ ’let’ var exp exp ’)’
| ’(’ ’:=’ var exp ’)’
| ’(’ ’if’ exp exp exp ’)’
| ’(’ ’while’ exp exp ’)’
| etc.

Informally, the meaning of (let x e1 e2) is: evaluate e1 to a value v1,

create a new store location l bound to x and initialized to v1, and evaluate

e2 in the resulting environment and store.

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 33

Example
language

State machine transition judgments

STATE MACHINE

To evaluate this language, we choose a machine state consisting of:

• the current environment E, which maps each in-scope variable to a

location l.

• the current store S, which maps each location l to an integer value v.

• the current expression e, to be evaluated.

We give the state transitions in the form of judgments:

〈e, E, S〉 ⇓ 〈v, S′〉

Intuitively, this says that evaluating expression e in environment E and

store S yields the value v and the (possibly) changed store S′.

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 34

current expression result value

final store
maps locations l to values v

current environment
maps vars x to locations l

initial store
maps locations l to values v

Evaluating expression e in environment E and store S yields value v
and (possibly) changed store Sʹ

Evaluation by inference
To describe the machine’s operation, we give rules of

inference that say when a judgment can be derived from
judgments about sub-expressions

We can view evaluation of the program as the process
of building an inference tree

Notation has similarities to axiomatic semantics: idea of
derivation is that same, but contents of judgments is
different

OPERATIONAL SEMANTICS BY INFERENCE

To describe the machine’s operation, we give rules of inference that

state when a judgment can be derived from judgments about

sub-expressions.

The form of a rule is

premises

conclusion
(Name of rule)

We can view evaluation of the program as the process of building an

inference tree.

This notation has similarities to axiomatic semantics: the notion of

derivation is essentially the same, but the content of judgments is

different.

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 35

ENVIRONMENTS AND STORES, FORMALLY

• We write E(x) means the result of looking up x in environment E. (This

notation is because an environment is like a function taking a name as

argument and returning a meaning as result.)

• We write E + {x !→ v} for the environment obtained from existing

environment E by extending it with a new binding from x to v. If E
already has a binding for x, this new binding replaces it.

The domain of an environment, dom(E), is the set of names bound in E.

Analogously with environments, we’ll write

• S(l) to mean the value at location l of store S

• S + {l !→ v} to mean the store obtained from store S by extending (or

updating) it so that location l maps to value v.

• dom(S) for the set of locations bound in store S.

Also, we’ll write

• S − {l} to mean the store obtained from store S by removing the

binding for location l.

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 36

EVALUATION RULES (1)

l = E(x) v = S(l)

〈x,E, S〉 ⇓ 〈v, S〉
(Var)

〈i, E, S〉 ⇓ 〈i, S〉
(Int)

〈e1, E, S〉 ⇓ 〈v1, S′〉 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(+ e1 e2), E, S〉 ⇓ 〈v1 + v2, S′′〉
(Add)

〈e1, E, S〉 ⇓ 〈v1, S′〉 l /∈ dom(S′)

〈e2, E + {x %→ l}, S′ + {l %→ v1}〉 ⇓ 〈v2, S′′〉

〈(let x e1 e2), E, S〉 ⇓ 〈v2, S′′ − {l}〉
(Let)

〈e, E, S〉 ⇓ 〈v, S′〉 l = E(x)

〈(:= x e), E, S〉 ⇓ 〈v, S′ + {l %→ v}〉
(Assgn)

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 37

EVALUATION RULES (2)

〈e1, E, S〉 ⇓ 〈v1, S′〉 v1 $= 0 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v2, S′′〉
(If-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉 〈e3, E, S′〉 ⇓ 〈v3, S′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v3, S′′〉
(If-zero)

〈e1, E, S〉 ⇓ 〈v1, S′〉 v1 $= 0 〈e2, E, S′〉 ⇓ 〈v2, S′′〉

〈(while e1 e2), E, S′′〉 ⇓ 〈v3, S′′′〉

〈(while e1 e2), E, S〉 ⇓ 〈v3, S′′′〉
(While-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉

〈(while e1 e2), E, S〉 ⇓ 〈0, S′〉
(While-zero)

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 38

Example Derivation Treesh10, ;, ;i + h10, ;i (Int)

h21, {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 10}i (Int)

h(:= x 21), {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 21}i (Assgn) hx, {x 7! L1}, {L1 7! 21}i + h21, {L1 7! 21}i (Var)

h(+ (:= x 21) x), {x 7! L1}, {L1 7! 10}i + h42, {L1 7! 21}i (Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

h10, ;, ;i + h10, ;i (Int)

h21, E1, S1i + h21, S1i
(Int)

h(:= x 21), E1, S1i + h21, S2i
(Assgn) hx, E1, S2i + h21, S2i

(Var)

h(+ (:= x 21) x), E1, S1i + h42, S2i
(Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

where E1 = {x 7! L1}, S1 = {L1 7! 10}, S2 = {L1 7! 21}.

1

h10, ;, ;i + h10, ;i (Int)

h21, {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 10}i (Int)

h(:= x 21), {x 7! L1}, {L1 7! 10}i + h21, {L1 7! 21}i (Assgn) hx, {x 7! L1}, {L1 7! 21}i + h21, {L1 7! 21}i (Var)

h(+ (:= x 21) x), {x 7! L1}, {L1 7! 10}i + h42, {L1 7! 21}i (Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

h10, ;, ;i + h10, ;i (Int)

h21, E1, S1i + h21, S1i
(Int)

h(:= x 21), E1, S1i + h21, S2i
(Assgn) hx, E1, S2i + h21, S2i

(Var)

h(+ (:= x 21) x), E1, S1i + h42, S2i
(Add)

h(let x 10 (+ (:= x 21) x)), ;, ;i + h42, ;i (Let)

where E1 = {x 7! L1}, S1 = {L1 7! 10}, S2 = {L1 7! 21}.

h�1, ;, ;i + h�1, ;i
(Int)

hx, E1, S1i + h�1, S1i
(Var)

hx, E1, S1i + h�1, S1i
(Var)

h1, E1, S1i + h1, S1i
(Int)

h(+ x 1), E1, S1i + h0, S1i
(Add)

h(:= x (+ x 1)), E1, S1i + h0, S2i
(Assgn)

hx, E1, S2i + h0, S2i
(Var)

h(while := x (+ x 1)), E1, S2i + h0, S2i
(While-zero)

h(while (:= x (+ x 1))), E1, S1i + h0, S2i
(While-nzero)

h(let x -1 (while (:= x (+ x 1)))), ;, ;i + h0, ;i
(Let)

where E1 = {x 7! L1}, S1 = {L1 7! �1}, S2 = {L1 7! 0}.

hx, E1, S1i + h�1, S1i
(Var)

hx, E1, S1i + h�1, S1i
(Var) h1, E1, S1i + h1, S1i

(Int)

h(+ x 1), E1, S1i + h0, S1i
(Add)

h(:= x (+ x 1)), E1, S1i + h0, S2i
(Assgn)

hx, E1, S2i + h0, S2i
(Var)

h(while x (:= x (+ x 1))), E1, S2i + h0, S2i
(While-zero)

h(while x (:= x (+ x 1))), E1, S1i + h0, S2i
(While-nzero)

where E1 = {x 7! L1}, S1 = {L1 7! �1}, S2 = {L1 7! 0}.

1

About the rules
As usual in inference systems, a rule only applies if all

the premises above the line can be shown

Structure of rules guarantees that at most one rule is
applicable at any point

Store relationships constrain the order of evaluation of
premises

(For simplicity here, we use just a single global store)

If no rules apply, the evaluation gets stuck; this
corresponds to an (unchecked) runtime error

Rules vs. Interpreter
We can view a recursive interpreter as implementing a bottom-up

exploration of the inference tree

A function like

returns a value v and has side effects on a global store store such that

The implementation of eval dispatches on the syntactic form of e,
choosing the appropriate rule,

and makes recursive calls on eval corresponding to the premises of
that rule.

Question: How deep can the derivation tree get?

NOTES ON THE RULES

• The structure of the rules guarantees that at most one rule is applicable

at any point.

• The store relationships constrain the order of evaluation.

• If no rules are applicable, the evaluation gets stuck; this corresponds

to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up

exploration of the inference tree. A function like

Value eval(Exp e, Env env) { }

returns a value v and has side effects on a global store such that

〈e, env, storebefore〉 ⇓ 〈v, storeafter〉

The implementation of eval dispatches on the syntactic form of e,

chooses the appropriate rule, and makes recursive calls on eval

corresponding to the premises of that rule.

Question: how deep can the derivation tree get?

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 39

NOTES ON THE RULES

• The structure of the rules guarantees that at most one rule is applicable

at any point.

• The store relationships constrain the order of evaluation.

• If no rules are applicable, the evaluation gets stuck; this corresponds

to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up

exploration of the inference tree. A function like

Value eval(Exp e, Env env) { }

returns a value v and has side effects on a global store such that

〈e, env, storebefore〉 ⇓ 〈v, storeafter〉

The implementation of eval dispatches on the syntactic form of e,

chooses the appropriate rule, and makes recursive calls on eval

corresponding to the premises of that rule.

Question: how deep can the derivation tree get?

PSU CS558 F’16 LECTURE 3 c© 1994–2016 ANDREW TOLMACH 39

