So far, we’ve presented operational semantics using interpreters: precise and executable, but verbose and too concrete.

One alternative: describe semantics using state transition judgments.

Example language:

```plaintext
exp := var | int
    | '(' '+' exp exp ')' 
    | '(' 'let' var exp exp ')' 
    | '(' '==' var exp ')' 
    | '(' 'if' exp exp exp ')' 
    | '(' 'while' exp exp ')' 
    | etc.
```
To evaluate this language, we choose a machine state consisting of:

- the current environment E, which maps each in-scope variable to a location l.
- the current store S, which maps each location l to an integer value v.
- the current expression e, to be evaluated.

We give the state transitions in the form of judgments:

$\langle e, E, S \rangle \Downarrow \langle v, S' \rangle$

Intuitively, this says that evaluating expression e in environment E and store S yields the value v and the (possibly) changed store S'.

Evaluating expression e in environment E and store S yields value v and (possibly) changed store S'.
Evaluate by inference

To describe the machine’s operation, we give rules of inference that say when a judgment can be derived from judgments about sub-expressions.

\[
\begin{array}{c}
\text{premises} \\
\hline
\text{conclusion}
\end{array}
\] (Name of rule)

We can view evaluation of the program as the process of building an inference tree.

Notation has similarities to axiomatic semantics: idea of derivation is essentially the same, but contents of judgments is different.
Environments and Stores, Formally

- We write $E(x)$ means the result of looking up x in environment E. (This notation is because an environment is like a function taking a name as argument and returning a meaning as result.)

- We write $E + \{x \mapsto v\}$ for the environment obtained from existing environment E by **extending** it with a new binding from x to v. If E already has a binding for x, this new binding replaces it.

The **domain** of an environment, $\text{dom}(E)$, is the set of names bound in E.

Analogously with environments, we’ll write

- $S(l)$ to mean the value at location l of store S

- $S + \{l \mapsto v\}$ to mean the store obtained from store S by extending (or updating) it so that location l maps to value v.

- $\text{dom}(S)$ for the set of locations bound in store S.

Also, we’ll write

- $S - \{l\}$ to mean the store obtained from store S by removing the binding for location l.
EVALUATION RULES (1)

\[
\begin{align*}
 l &= E(x) \quad v = S(l) & \text{(Var)} \\
 \langle x, E, S \rangle &\downarrow \langle v, S \rangle \\
 \langle i, E, S \rangle &\downarrow \langle i, S \rangle & \text{(Int)} \\
 \langle e_1, E, S \rangle &\downarrow \langle v_1, S' \rangle \quad \langle e_2, E, S' \rangle &\downarrow \langle v_2, S'' \rangle & \text{(Add)} \\
 \langle (+ e_1 e_2), E, S \rangle &\downarrow \langle v_1 + v_2, S'' \rangle \\
 \langle e_1, E, S \rangle &\downarrow \langle v_1, S' \rangle \quad l \notin \text{dom}(S') \\
 \langle e_2, E + \{x \mapsto l\}, S' + \{l \mapsto v_1\} \rangle &\downarrow \langle v_2, S'' \rangle & \text{(Let)} \\
 \langle (\text{let } x e_1 e_2), E, S \rangle &\downarrow \langle v_2, S'' - \{l\} \rangle \\
 \langle e, E, S \rangle &\downarrow \langle v, S' \rangle \quad l = E(x) & \text{(Assgn)} \\
 \langle (\text{:= } x e), E, S \rangle &\downarrow \langle v, S' + \{l \mapsto v\} \rangle
\end{align*}
\]
\[
\langle e_1, E, S \rangle \downarrow \langle v_1, S' \rangle \quad v_1 \neq 0 \quad \langle e_2, E, S' \rangle \downarrow \langle v_2, S'' \rangle \\
\frac{\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_2, S'' \rangle}{\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_2, S'' \rangle} \quad \text{(If-nzero)}
\]

\[
\langle e_1, E, S \rangle \downarrow \langle 0, S'' \rangle \quad \langle e_3, E, S' \rangle \downarrow \langle v_3, S'' \rangle \quad \langle e_1, E, S \rangle \downarrow \langle 0, S'' \rangle \\
\frac{\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_3, S'' \rangle}{\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_3, S'' \rangle} \quad \text{(If-zero)}
\]

\[
\langle e_1, E, S \rangle \downarrow \langle v_1, S' \rangle \quad v_1 \neq 0 \quad \langle e_2, E, S' \rangle \downarrow \langle v_2, S'' \rangle \quad \langle e_1, E, S \rangle \downarrow \langle 0, S'' \rangle \\
\frac{\langle (\text{while } e_1 \ e_2), E, S'' \rangle \downarrow \langle v_3, S''' \rangle}{\langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle v_3, S''' \rangle} \quad \text{(While-nzero)}
\]

\[
\langle e_1, E, S \rangle \downarrow \langle 0, S' \rangle \quad \langle e_1, E, S \rangle \downarrow \langle 0, S' \rangle \\
\frac{\langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle 0, S' \rangle}{\langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle 0, S' \rangle} \quad \text{(While-zero)}
\]
Example Derivation Trees

where \(E_1 = \{ x \mapsto L_1 \}, \ S_1 = \{ L_1 \mapsto 10 \}, \ S_2 = \{ L_1 \mapsto 21 \} \).

where \(E_1 = \{ x \mapsto L_1 \}, \ S_1 = \{ L_1 \mapsto -1 \}, \ S_2 = \{ L_1 \mapsto 0 \} \).
About the rules

- As usual in inference systems, a rule only applies if all the premises above the line can be shown.

- Structure of rules guarantees that at most one rule is applicable at any point.

- Store relationships constrain the order of evaluation of premises.

 - (For simplicity here, we use just a single global store)

- If no rules apply, the evaluation gets stuck; this corresponds to an (unchecked) runtime error.
Rules vs. Interpreter

We can view a recursive interpreter as implementing a bottom-up exploration of the inference tree.

A function like

```
Value eval(Exp e, Env env) { .... }
```

returns a value \(v \) and has side effects on a global store \(\text{store} \) such that

\[
\langle e, \text{env}, \text{store} \rangle_{\text{before}} \downarrow \langle v, \text{store} \rangle_{\text{after}}
\]

The implementation of \(\text{eval} \) dispatches on the syntactic form of \(e \), choosing the appropriate rule,

and makes recursive calls on \(\text{eval} \) corresponding to the premises of that rule.

Question: How deep can the derivation tree get?