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Describing the Store
 Variable declarations often implicitly allocate storage


In most languages, there are other ways to allocate 
storage too, such as explicit new operations or implicit 
boxing operations 


Simplistic store model: mutable map 


Better models require distinguishing different classes 
of storage based on the lifetime of the data

Location Value

Memory 

  int a = 42;

 new P(2,5)



Storage Lifetimes
Typical computations use far more memory locations 

in total than they use at any one point


So most language implementations support re-use of 
memory locations that are no longer needed


The lifetime of every object should cover all moments 
when the object is being used


Otherwise, we get a memory safety bug
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Storage Classes: Static 
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Storage Classes: Stack 
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Storage Classes: Heap 
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Scope, Lifetime, Memory Safety
Lifetime and scope are closely connected


For a language to be memory safe, it suffices to 
make sure that in-scope identifiers never point 
(directly or indirectly) to deallocated objects


For stack-allocated local variables, this happens 
naturally


Stack locations are deallocated only when 
function returns and its local variables go out of 
scope forever*

* Unless we have "first-class" functions...  



Scope, Lifetime, Memory Safety
For heap data, easiest to enforce safety using a 

garbage collector (GC)


GC typically works by recursively tracing all 
objects reachable from names that are currently in 
scope (or that might come back into scope later)


Only unreachable objects are deallocated, making 
their locations available for future re-allocation


(An alternative method is reference counting)


Of course, this takes time!



Tracing Garbage Collection 
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Explicit Deallocation
Many older languages (notably C/C++) support explicit 

deallocation of heap objects


Somewhat more efficient than GC


But makes language unsafe: “dangling pointer” bug occurs if we 
deallocate an object that is still in use [unchecked runtime error]


Converse problem: “space leak” bug occurs if we don’t 
deallocate an unneeded object.


Not a safety problem, but may unnecessarily make program 
run slower or crash with “out of memory” error


Rust language supports safe explicit deallocation.

PROBLEMS WITH EXPLICIT CONTROL OF LIFETIMES

Many older languages support pointers and explicit deallocation of
storage, which is typically somewhat more efficient than garbage
collection.

But explicit deallocation makes it easy for the programmer to accidentally
kill off an object even though it is still accessible, e.g.:

char *foo() {
char *p = malloc(100);
free(p);
return p;}

Here the allocated storage remains accessible (via the value of variable
p) even after that storage has been freed (and possibly reallocated for
something else).

This is usually a bug (a dangling pointer). The converse problem, failing
to deallocate an object that is no longer needed, can cause a space leak,
leading to unnecessary failure of a program by running out of memory.
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Pragmatics of Large Values
Real machines are very efficient at handling word-size 

chunks of data (e.g. 16-64 bits depending on hardware).  
Things that fit easily in a word:


Numbers, characters, booleans, enumerations, class 
tags, etc.


Memory addresses (locations)


Words are very easy to move, load, store, supply to 
operations, etc.


But how can we manipulate larger chunks of data, such 
as records or arrays, which may occupy many words?



Boxing
Two basic ways to represent large values


The unboxed representation holds the actual bits of 
the value, using as many machine words as needed 

The boxed representation allocates separate 
storage (the “box”) for the actual bits, and then 
represents the value by the location of that storage


Boxes are usually stored in the heap


Boxing may be performed implicitly or explicitly

~textbook: “value” model

~textbook: “reference” model

x

    x

42 42 42 ... 42 42

42 42 42 ... 42 42



Boxed vs. Unboxed
Choice of representation can make a big difference 

to semantics on operations on the data


What does assignment mean?


What do equality comparisons mean?


How does parameter passing work?



Unboxed Assignment Semantics
Early languages often used unboxed records and arrays

UNBOXED REPRESENTATION ASSIGNMENT SEMANTICS

Earlier languages often used unboxed representations for records and ar-

rays. For example, in Pascal and related languages,

TYPE Employee =
RECORD

name : ARRAY (1..80) OF CHAR;
age : INTEGER;

END;

specifies an unboxed representation, in which value of type Employee will

occupy 84 bytes (assuming 1 byte characters, 4 byte integers).

The semantics of assignment is to copy the entire representation. Hence

VAR e1,e2 : Employee;
e1.age := 91;
e2 := e1;
e1.age := 19;
WRITE(e1.age, e2.age);

prints 19 followed by 91.
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Pascal
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Semantics of assignment is to copy entire representation

UNBOXED REPRESENTATION ASSIGNMENT SEMANTICS

Earlier languages often used unboxed representations for records and ar-

rays. For example, in Pascal and related languages,

TYPE Employee =
RECORD

name : ARRAY (1..80) OF CHAR;
age : INTEGER;

END;

specifies an unboxed representation, in which value of type Employee will

occupy 84 bytes (assuming 1 byte characters, 4 byte integers).

The semantics of assignment is to copy the entire representation. Hence

VAR e1,e2 : Employee;
e1.age := 91;
e2 := e1;
e1.age := 19;
WRITE(e1.age, e2.age);

prints 19 followed by 91.

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 20

prints 19,91
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Unboxed representation issues
This assignment semantics seems simple and 

appealing, but it has problems:


Assignment of a large value is expensive, since 
lots of words may need to be copied


Especially hard to generate efficient code if size of 
large value is not known statically



Boxed Assignment Semantics
Most modern languages (e.g. Java, Python, Haskell) 

box all values (e.g. objects, records, constructions) that 
are larger than one word


These languages naturally use reference semantics for 
assignment: just the pointer is copied, creating an alias

prints 19,19

Scala

case class emp(var name:String, var Age:Int)
val e1 = emp("fred",91)
val e2 = e1
e1.age = 19
println(e1.age + " " + e2.age)



Step-

by-

step


91frede1

e2 = e1
91frede1

e2

e1.age = 19

19frede1

e2



Explicit Pointers
Languages that use unboxed semantics may also 

have explicit pointer types to support reference-style 
operations

C++

In C/C++, struct and class instances are fundamentally 
unboxed, but programers usually box them explicitly (using 
new or malloc) and manipulate them via pointers

struct Emp {
  char name[80];
  int age;
};
Emp *e1 = new Emp();
e1->age = 91;
Emp *e2 = e1;
Emp e3 = *e1;
e1->age = 19;
cout << e1->age << " " << e2->age 
     << " " << e3.age << "\n";

prints 19,19,91



Varieties of Equality
Languages typically provide some form of built-in equality 

testing on values. When are two (large) values equal?


Under structural equality, values are equal when their contents 
are equal, bit for bit.


Under reference equality, values are equal when their locations 
are identical. 


Here a,b,c are all structurally equal, but only a and c are 
reference equal


Reference equality ⇒ structural equality, but not vice-versa

int[] a = {42,42,42,...,42};
int[] b = {42,42,42,...,42};
int[] c = a;

Java



Multiple kinds of equality
Structural equality is only sane definition for unboxed values


Reference equality may be cheaper to check than structural equality 


Some language provide both, under different names


They may also provide a standard way for programmer to define 
equality for a given type in an ad-hoc way


E.g in Scala:


 the eq operator gives reference equality


 the == operator invokes a user-defined equals method


 for case classes equals is pre-defined to be structural equality



Pairs 
To study the essence of heap data structures, we can 

focus on a single new kind of value, the pair


Like a record with two fields, each containing 
another value


Written using “infix dot” notation


We can build larger records of a                            
fixed size just by nesting pairs

PAIRS

We can start studying “large” values in our interpreters by adding in just
one new kind of value, the pair. You can think of a pair as a record with
two fields, each containing a value — which might be an integer or
another pair.

We write pairs using “infix dot” notation. For example:

(1 . ((2 . 3) . 4))

corresponds to the structure:

2 3

4

1

We can build larger records of a fixed size just by nesting pairs.
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corresponds to



We can also build all kinds of interesting arbitrary-
sized recursive structures using pairs


For example, to represent (singly-linked) lists we 
can use a pair for each node in the list.


First field contains an element; second field points 
to the next link, or is 0 to indicate end-of-list


 Example: 1,2,3


Note that for programs to detect end-of-list, we need 
a test that distinguishes integers from pairs

Lists LISTS

We can also build all kinds of interesting arbitrary-sized recursive
structures using pairs.

For example, to represent lists we can use a pair for each link in the list.
The left field contains an element; the right field points to the next link, or
is 0 to indicate end-of-list.

Example:

[1,2,3]

(1.(2.(3.0)))

1 2 3 0

Note that for programs to detect when they’ve hit the end of a list, they’ll
need a way to distinguish integers from pairs.
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