Formal Operational Semantics

So far, we’ve presented operational semantics using interpreters: precise and executable, but verbose and too concrete.

One alternative: describe semantics using state transition judgments.

Example language:

```
exp  ::=  var  |  int
   |  '('  '+'  exp  exp  ')'    
   |  '('  'let'  var  exp  exp  ')' 
   |  '('  '=>'  var  exp  ')'  
   |  '('  'if'  exp  exp  exp  ')' 
   |  '('  'while'  exp  exp  ')'  
   |  etc. 
```
State machine transition judgments

To evaluate this language, we choose a machine state consisting of:

- the current environment E, which maps each in-scope variable to a location l.
- the current store S, which maps each location l to an integer value v.
- the current expression e, to be evaluated.

We give the state transitions in the form of judgments:

$$\langle e, E, S \rangle \Downarrow \langle v, S' \rangle$$

Intuitively, this says that evaluating expression e in environment E and store S yields the value v and the (possibly) changed store S'.

Evaluating expression e in environment E and store S yields value v and (possibly) changed store S'.
Evaluate by inference

- To describe the machine’s operation, we give rules of inference that say when a judgment can be derived from judgments about sub-expressions.

\[
\begin{array}{c}
\text{premises} \\
\hline
\text{conclusion}
\end{array}
\quad \text{(Name of rule)}
\]

- We can view evaluation of the program as the process of building an inference tree.

- Notation has similarities to axiomatic semantics: idea of derivation is that same, but contents of judgments is different.
We write $E(x)$ means the result of looking up x in environment E. (This notation is because an environment is like a function taking a name as argument and returning a meaning as result.)

We write $E + \{x \mapsto v\}$ for the environment obtained from existing environment E by extending it with a new binding from x to v. If E already has a binding for x, this new binding replaces it.

The domain of an environment, $\text{dom}(E)$, is the set of names bound in E.

Analogously with environments, we’ll write:

- $S(l)$ to mean the value at location l of store S
- $S + \{l \mapsto v\}$ to mean the store obtained from store S by extending (or updating) it so that location l maps to value v.
- $\text{dom}(S)$ for the set of locations bound in store S.

Also, we’ll write:

- $S - \{l\}$ to mean the store obtained from store S by removing the binding for location l.
Evaluation Rules (1)

\[
\frac{l = E(x) \quad v = S(l)}{\langle x, E, S \rangle \Downarrow \langle v, S \rangle} \quad \text{(Var)}
\]

\[
\frac{\langle i, E, S \rangle \Downarrow \langle i, S \rangle}{\quad \text{(Int)}}
\]

\[
\frac{\langle e_1, E, S \rangle \Downarrow \langle v_1, S' \rangle \quad \langle e_2, E, S' \rangle \Downarrow \langle v_2, S'' \rangle}{\langle (+ \ e_1 \ e_2), E, S \rangle \Downarrow \langle v_1 + v_2, S'' \rangle} \quad \text{(Add)}
\]

\[
\frac{\langle e_1, E, S \rangle \Downarrow \langle v_1, S' \rangle \quad l \not\in \text{dom}(S')}{\langle e_2, E + \{x \mapsto l\}, S' + \{l \mapsto v_1\} \rangle \Downarrow \langle v_2, S'' \rangle} \quad \text{(Let)}
\]

\[
\frac{\langle e, E, S \rangle \Downarrow \langle v, S' \rangle \quad l = E(x)}{\langle (: = x \ e), E, S \rangle \Downarrow \langle v, S' + \{l \mapsto v\} \rangle} \quad \text{(Assgn)}
\]
EVALUATION RULES (2)

\[
\begin{align*}
\langle e_1, E, S \rangle \downarrow \langle v_1, S' \rangle \quad v_1 \neq 0 & \quad \langle e_2, E, S' \rangle \downarrow \langle v_2, S'' \rangle \\
\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_2, S'' \rangle & \quad \text{(If-nzero)}
\end{align*}
\]

\[
\begin{align*}
\langle e_1, E, S \rangle \downarrow \langle 0, S' \rangle \quad \langle e_3, E, S' \rangle \downarrow \langle v_3, S'' \rangle & \quad \langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_3, S'' \rangle \\
\langle (\text{if } e_1 \ e_2 \ e_3), E, S \rangle \downarrow \langle v_3, S'' \rangle & \quad \text{(If-zero)}
\end{align*}
\]

\[
\begin{align*}
\langle e_1, E, S \rangle \downarrow \langle v_1, S' \rangle \quad v_1 \neq 0 & \quad \langle e_2, E, S' \rangle \downarrow \langle v_2, S'' \rangle \\
\langle (\text{while } e_1 \ e_2), E, S'' \rangle \downarrow \langle v_3, S''' \rangle & \quad \langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle v_3, S''' \rangle \\
\langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle v_3, S''' \rangle & \quad \text{(While-nzero)}
\end{align*}
\]

\[
\begin{align*}
\langle e_1, E, S \rangle \downarrow \langle 0, S' \rangle & \quad \langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle 0, S' \rangle \\
\langle (\text{while } e_1 \ e_2), E, S \rangle \downarrow \langle 0, S' \rangle & \quad \text{(While-zero)}
\end{align*}
\]
Example Derivation Trees

where \(E_1 = \{ x \mapsto L_1 \} \), \(S_1 = \{ L_1 \mapsto 10 \} \), \(S_2 = \{ L_1 \mapsto 21 \} \).

\[
\frac{\langle 10, \emptyset, \emptyset \rangle \downarrow \langle 10, \emptyset \rangle}{\langle \text{Int} \rangle}
\frac{\langle 21, E_1, S_1 \rangle \downarrow \langle 21, S_1 \rangle}{\langle \text{Int} \rangle}
\frac{\langle \text{Assgn} \rangle}{\langle \text{Add} \rangle}
\frac{\langle \text{Var} \rangle}{\langle \text{Let} \rangle}
\]

\[
\langle \text{Let} \rangle
\frac{\langle \text{Var} \rangle}{\langle \text{Add} \rangle}
\frac{\langle \text{Int} \rangle}{\langle \text{Assgn} \rangle}
\frac{\langle \text{Add} \rangle}{\langle \text{Var} \rangle}
\]

where \(E_1 = \{ x \mapsto L_1 \} \), \(S_1 = \{ L_1 \mapsto -1 \} \), \(S_2 = \{ L_1 \mapsto 0 \} \).

\[
\frac{\langle x, E_1, S_1 \rangle \downarrow \langle -1, S_1 \rangle}{\langle \text{Var} \rangle}
\frac{\langle 1, E_1, S_1 \rangle \downarrow \langle 1, S_1 \rangle}{\langle \text{Int} \rangle}
\frac{\langle \text{Add} \rangle}{\langle \text{Assgn} \rangle}
\frac{\langle \text{Var} \rangle}{\langle \text{While-zero} \rangle}
\frac{\langle \text{While-nzero} \rangle}{\langle \text{Var} \rangle}
\]

\[
\langle \text{While-zero} \rangle
\frac{\langle \text{While-nzero} \rangle}{\langle \text{Var} \rangle}
\frac{\langle \text{Assgn} \rangle}{\langle \text{Add} \rangle}
\frac{\langle \text{Int} \rangle}{\langle \text{Var} \rangle}
\]

where \(E_1 = \{ x \mapsto L_1 \} \), \(S_1 = \{ L_1 \mapsto -1 \} \), \(S_2 = \{ L_1 \mapsto 0 \} \).
About the rules

As usual in inference systems, a rule only applies if all the premises above the line can be shown.

Structure of rules guarantees that at most one rule is applicable at any point.

Store relationships constrain the order of evaluation of premises.

(For simplicity here, we use just a single global store)

If no rules apply, the evaluation gets stuck; this corresponds to an (unchecked) runtime error.
Rules vs. Interpreter

We can view a recursive interpreter as implementing a bottom-up exploration of the inference tree.

A function like

\[\text{Value eval(Exp } e, \text{ Env env) } \{ \text{ } \} \]

returns a value \(v \) and has side effects on a global store \(\text{store} \) such that

\[\langle e, \text{env, store before} \rangle \Downarrow \langle v, \text{store after} \rangle \]

The implementation of \(\text{eval} \) dispatches on the syntactic form of \(e \), choosing the appropriate rule,

and makes recursive calls on \(\text{eval} \) corresponding to the premises of that rule.

Question: How deep can the derivation tree get?