
CS558 �
Programming Languages

Fall 2023

Lecture 3b

Andrew Tolmach

Portland State University

© 1994-2023

Describing the Store
 Variable declarations often implicitly allocate storage

In most languages, there are other ways to allocate
storage too, such as explicit new operations or implicit
boxing operations

Simplistic store model: mutable map

Better models require distinguishing different classes
of storage based on the lifetime of the data

Location Value

Memory

 int a = 42;

 new P(2,5)

Storage Lifetimes
Typical computations use far more memory locations

in total than they use at any one point

So most language implementations support re-use of
memory locations that are no longer needed

The lifetime of every object should cover all moments
when the object is being used

Otherwise, we get a memory safety bug

allocation deallocation

lifetime
time→

Storage Classes

Static

Heap

Stack

typical 
process 
memory 
layout

Storage Classes: Static

Static

Heap

Stack

typical 
process 
memory 
layout

Lifetime = 
Entire Execution

Usually holds 
global 
variables 
and constants

Norruntime 
allocation/ 
deallocation 
cost Fixed addresses 

known before  
execution starts

Storage Classes: Stack

Static

Heap

Stack

typical 
process 
memory 
layout

Nested lifetimes: 
last allocated is 
first deallocated

Addresses are  
relative to  
top-of-stack 
pointer (sp)

Allocation/ 
deallocation 
is very cheap 
(just adjust sp)

(and internal 
control data, 
e.g. procedure 
return addresses)

xStack

push pop

Usually holds 
function-local 
variables

Good for cache 
and VM locality

sp

xStack

xStack
xStack
xStack

sp+3

Storage Classes: Heap

Static

Stack

typical 
process 
memory 
layout

Arbitrary 
lifetimes Allocation/ 

deallocation 
are relatively 
expensive

(and sometimes 
also implicitly 
allocated data, 
e.g. bignums, 
closures, etc.)

xStack

Used for 
explicitly 
allocated 
data

xStack

xStack
xStack
xStack

Heap Done by runtime 
system code

Deallocation can be 
manual (risky) or 
done via garbage 
collection

Scope, Lifetime, Memory Safety
Lifetime and scope are closely connected

For a language to be memory safe, it suffices to
make sure that in-scope identifiers never point
(directly or indirectly) to deallocated objects

For stack-allocated local variables, this happens
naturally

Stack locations are deallocated only when
function returns and its local variables go out of
scope forever*

* Unless we have "first-class" functions...

Scope, Lifetime, Memory Safety
For heap data, easiest to enforce safety using a

garbage collector (GC)

GC typically works by recursively tracing all
objects reachable from names that are currently in
scope (or that might come back into scope later)

Only unreachable objects are deallocated, making
their locations available for future re-allocation

(An alternative method is reference counting)

Of course, this takes time!

Tracing Garbage Collection

Static

Stack

typical 
process 
memory 
layoutxStack

xStack

xStack
xStack
xStack

Heap

Start by tracing 
pointers  
from roots 
in the stack 
and static areas

Recursively trace 
pointers between 
heap objects

When trace is 
done, any object 
that is not live is 
garbage

Its space can 
be reused for 
new allocations

Any heap object 
reached by tracing 
is live

Explicit Deallocation
Many older languages (notably C/C++) support explicit

deallocation of heap objects

Somewhat more efficient than GC

But makes language unsafe: “dangling pointer” bug occurs if we
deallocate an object that is still in use [unchecked runtime error]

Converse problem: “space leak” bug occurs if we don’t
deallocate an unneeded object.

Not a safety problem, but may unnecessarily make program
run slower or crash with “out of memory” error

Rust language supports safe explicit deallocation.

PROBLEMS WITH EXPLICIT CONTROL OF LIFETIMES

Many older languages support pointers and explicit deallocation of
storage, which is typically somewhat more efficient than garbage
collection.

But explicit deallocation makes it easy for the programmer to accidentally
kill off an object even though it is still accessible, e.g.:

char *foo() {
char *p = malloc(100);
free(p);
return p;}

Here the allocated storage remains accessible (via the value of variable
p) even after that storage has been freed (and possibly reallocated for
something else).

This is usually a bug (a dangling pointer). The converse problem, failing
to deallocate an object that is no longer needed, can cause a space leak,
leading to unnecessary failure of a program by running out of memory.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 23

Pragmatics of Large Values
Real machines are very efficient at handling word-size

chunks of data (e.g. 16-64 bits depending on hardware).
Things that fit easily in a word:

Numbers, characters, booleans, enumerations, class
tags, etc.

Memory addresses (locations)

Words are very easy to move, load, store, supply to
operations, etc.

But how can we manipulate larger chunks of data, such
as records or arrays, which may occupy many words?

Boxing
Two basic ways to represent large values

The unboxed representation holds the actual bits of
the value, using as many machine words as needed 

The boxed representation allocates separate
storage (the “box”) for the actual bits, and then
represents the value by the location of that storage

Boxes are usually stored in the heap

Boxing may be performed implicitly or explicitly

~textbook: “value” model

~textbook: “reference” model

x

 x

42 42 42 ... 42 42

42 42 42 ... 42 42

Boxed vs. Unboxed
Choice of representation can make a big difference

to semantics on operations on the data

What does assignment mean?

What do equality comparisons mean?

How does parameter passing work?

Unboxed Assignment Semantics
Early languages often used unboxed records and arrays

UNBOXED REPRESENTATION ASSIGNMENT SEMANTICS

Earlier languages often used unboxed representations for records and ar-

rays. For example, in Pascal and related languages,

TYPE Employee =
RECORD

name : ARRAY (1..80) OF CHAR;
age : INTEGER;

END;

specifies an unboxed representation, in which value of type Employee will

occupy 84 bytes (assuming 1 byte characters, 4 byte integers).

The semantics of assignment is to copy the entire representation. Hence

VAR e1,e2 : Employee;
e1.age := 91;
e2 := e1;
e1.age := 19;
WRITE(e1.age, e2.age);

prints 19 followed by 91.

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 20

Pascal

occupies

80x1 + 1x4

= 84 bytes

Semantics of assignment is to copy entire representation

UNBOXED REPRESENTATION ASSIGNMENT SEMANTICS

Earlier languages often used unboxed representations for records and ar-

rays. For example, in Pascal and related languages,

TYPE Employee =
RECORD

name : ARRAY (1..80) OF CHAR;
age : INTEGER;

END;

specifies an unboxed representation, in which value of type Employee will

occupy 84 bytes (assuming 1 byte characters, 4 byte integers).

The semantics of assignment is to copy the entire representation. Hence

VAR e1,e2 : Employee;
e1.age := 91;
e2 := e1;
e1.age := 19;
WRITE(e1.age, e2.age);

prints 19 followed by 91.

PSU CS558 F’15 LECTURE 3 c© 1994–2015 ANDREW TOLMACH 20

prints 19,91

e1

e2

fred
alice

e1.age := 91
e1

e2

91fred

alice

e2 := e1

e1

e2

91fred

fred 91

e1.age := 19

e1

e2

19fred

fred 91

Step-

by-

step

Unboxed representation issues
This assignment semantics seems simple and

appealing, but it has problems:

Assignment of a large value is expensive, since
lots of words may need to be copied

Especially hard to generate efficient code if size of
large value is not known statically

Boxed Assignment Semantics
Most modern languages (e.g. Java, Python, Haskell)

box all values (e.g. objects, records, constructions) that
are larger than one word

These languages naturally use reference semantics for
assignment: just the pointer is copied, creating an alias

prints 19,19

Scala

case class emp(var name:String, var Age:Int)
val e1 = emp("fred",91)
val e2 = e1
e1.age = 19
println(e1.age + " " + e2.age)

Step-

by-

step

91frede1

e2 = e1
91frede1

e2

e1.age = 19

19frede1

e2

Explicit Pointers
Languages that use unboxed semantics may also

have explicit pointer types to support reference-style
operations

C++

In C/C++, struct and class instances are fundamentally
unboxed, but programers usually box them explicitly (using
new or malloc) and manipulate them via pointers

struct Emp {
 char name[80];
 int age;
};
Emp *e1 = new Emp();
e1->age = 91;
Emp *e2 = e1;
Emp e3 = *e1;
e1->age = 19;
cout << e1->age << " " << e2->age
 << " " << e3.age << "\n";

prints 19,19,91

Varieties of Equality
Languages typically provide some form of built-in equality

testing on values. When are two (large) values equal?

Under structural equality, values are equal when their contents
are equal, bit for bit.

Under reference equality, values are equal when their locations
are identical.

Here a,b,c are all structurally equal, but only a and c are
reference equal

Reference equality ⇒ structural equality, but not vice-versa

int[] a = {42,42,42,...,42};
int[] b = {42,42,42,...,42};
int[] c = a;

Java

Multiple kinds of equality
Structural equality is only sane definition for unboxed values

Reference equality may be cheaper to check than structural equality

Some language provide both, under different names

They may also provide a standard way for programmer to define
equality for a given type in an ad-hoc way

E.g in Scala:

 the eq operator gives reference equality

 the == operator invokes a user-defined equals method

 for case classes equals is pre-defined to be structural equality

Pairs
To study the essence of heap data structures, we can

focus on a single new kind of value, the pair

Like a record with two fields, each containing
another value

Written using “infix dot” notation

We can build larger records of a
fixed size just by nesting pairs

PAIRS

We can start studying “large” values in our interpreters by adding in just
one new kind of value, the pair. You can think of a pair as a record with
two fields, each containing a value — which might be an integer or
another pair.

We write pairs using “infix dot” notation. For example:

(1 . ((2 . 3) . 4))

corresponds to the structure:

2 3

4

1

We can build larger records of a fixed size just by nesting pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 31

PAIRS

We can start studying “large” values in our interpreters by adding in just
one new kind of value, the pair. You can think of a pair as a record with
two fields, each containing a value — which might be an integer or
another pair.

We write pairs using “infix dot” notation. For example:

(1 . ((2 . 3) . 4))

corresponds to the structure:

2 3

4

1

We can build larger records of a fixed size just by nesting pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 31

corresponds to

We can also build all kinds of interesting arbitrary-
sized recursive structures using pairs

For example, to represent (singly-linked) lists we
can use a pair for each node in the list.

First field contains an element; second field points
to the next link, or is 0 to indicate end-of-list

 Example: 1,2,3

Note that for programs to detect end-of-list, we need
a test that distinguishes integers from pairs

Lists LISTS

We can also build all kinds of interesting arbitrary-sized recursive
structures using pairs.

For example, to represent lists we can use a pair for each link in the list.
The left field contains an element; the right field points to the next link, or
is 0 to indicate end-of-list.

Example:

[1,2,3]

(1.(2.(3.0)))

1 2 3 0

Note that for programs to detect when they’ve hit the end of a list, they’ll
need a way to distinguish integers from pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 32

LISTS

We can also build all kinds of interesting arbitrary-sized recursive
structures using pairs.

For example, to represent lists we can use a pair for each link in the list.
The left field contains an element; the right field points to the next link, or
is 0 to indicate end-of-list.

Example:

[1,2,3]

(1.(2.(3.0)))

1 2 3 0

Note that for programs to detect when they’ve hit the end of a list, they’ll
need a way to distinguish integers from pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 32

