
CS558 �
Programming Languages

Fall 2023

Lecture 3a

Andrew Tolmach

Portland State University

© 1994-2023

 Binding, Scope, Storage
Part of being a “high-level” language is letting the
programmer name things:

2

variables constants types
functions classes modules
fields operators ...

Generically, we call names identifiers

An identifier binding makes an association between the
identifier and the thing it names

An identifier use refers to the thing named

The scope of a binding is the part of the program where
it can be used

Scala Example

3

object Printer {
 def print(expr: Expr) : String = unparse(expr).toString()

 def unparse(expr: Expr) : SExpr = expr match {
 case Num(n) => SNum(n)
 case Add(l,r) => SList(SSym("+")::unparse(l)::unparse(r)::Nil)
 case Mul(l,r) => SList(SSym("*")::unparse(l)::unparse(r)::Nil)
 case Div(l,r) => SList(SSym("/")::unparse(l)::unparse(r)::Nil)
 }
}

binding use keyword

Identifier syntax is language-specific

Usually a sequence of alpha|numeric|symbol(?)

May be further rules/conventions for different categories

Identifiers are distinct from keywords!

Some identifiers are pre-defined (and can be re-defined)

Names, values, variables
Most languages let us bind variable names to
locations in the store that contain values

Name gives access to location for read or
update

Many languages also let us bind names directly to
(immutable) values computed by expressions

Sometimes (confusingly) also called “variables”

This lets us share expressions

to save repeated writing and, maybe,
evaluation

4

Scala var vs. val

Local Value Bindings

5

 expr ::= num | expr + expr | ... |(expr)|
 id | let id = expr in expr

 (let a = 8 + 5 in a * 3) + 3 Leta

Add Mul

Vara

Add

Num8 Num5 Num3

Num3

binding
use

scope

Bound vs. Free
A variable use x is bound if it appears in the scope of
a binding for x

Otherwise, it is free

Bound and free are relative to an enclosing
subexpression, e.g.

6

 (let a = 8 + 5 in a * 3)

 a is bound in

but free in

 a * 3

 We cannot evaluate a free variable

Parallel Scopes

7

 (let a = 8 + 5 in a * 3) +
 (let b = 1 in b + 2)

scopea scopeb

Mul

Add

Num3

Num1

Leta Letb

Vara

Add

Varb Num2

Add

Num8 Num5

What if both let’s bind a ?

Nested Scopes

8

 (let a = 8 + 5 in
 let b = a - 10 in
 a * b) + 2 Leta

Add

Mul

Vara

Add

Num8 Num5
Varb

Num2

scopea

Letb

Sub

Vara Num10

scopeb

scopea&bscopea

Shadowing

9

 (let a = 8 + 5 in
 let a = a - 10 in
 36 + a) + 3

Add

Num3Leta

Num8 Num5

Num36Num10 VaraVara

Add

AddSub

Leta

scopea

scopea

Common but not universal solution:
“Nearest enclosing binding” wins

Functions and parameters
Consider adding functions with parameters to our
expression language

We give names to these parameters

• The scope of a parameter is the function body

• The value of each parameter is provided at the
function call (or “application”) site

10

 (@ f (* 13 3))

function
name

actual
parameter

{application ASTdeclaration AST
 (f x (+ x 3))

formal
parameter

function
name

body

{

Function parameter scoping

Fundeff,x

Num3Varx

Add

 (f x (+ x 3))

scopex

Function Name Scoping
Typically, we want to allow functions to be recursive

Scope of function’s name includes its own body

12

 letfun f x = if x = 0 then 1 else x*f(x-1)
 in f(42)

scopef

Mutually Recursive Definitions

 letfun f(x) = g(x + 1)
 and g(y) = f(y - 1)
 in
 f(2) + g(4)

Many earlier languages were designed to be
compiled by a single pass through the source code
and therefore use forward declarations

RECURSIVE DEFINITIONS (CONTINUED)

• Another alternative is distinguish declarations from definitions.
E.g. in C:

void g (double y); /* declares g but doesn’t define it */
void f(double x) { g(x+1.0); }
void g(double y) { f(y-1.0); } /* definition is here */

• Historically, this approach was taken so that compilers could process
programs one function in a single forward pass (no longer a common
requirement).

• A third alternative is to use explicit syntax to link mutually resursive defi-
nitions. E.g. in OCaml:

let rec f(x:float) = g(x +. 1.0)
and g(y:float) = f(y -. 1.0)

• Note that all these approaches to recursion break the “up and out” rule
for finding bindings.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 13

C

scopef,g

In some languages, all top-level definitions are
(implicitly) treated as mutually recursive.

“Dynamic Scope”
What should happen in the following program?

14

 letfun f(x) = x + y
 in f(42)

How about this one?

 letfun f(x) = x + y
 in let y = 2
 in f(42)

One possible answer: let the value of y “leak” into f

This is an example of “dynamic scope” Bad idea!
Why?

“Static scope”/“Lexical scope”

15

Better if this code is considered to have an error

Looking at a function declaration, we can always
determine if and where a variable is bound without
considering the dynamic execution of the program!

Some scripting languages still use dynamic scope, but
as programs get larger, its dangers become obvious

 letfun f(x) = x + y
 in let y = 2
 in f(42)

Aside: Erroneous Programs
 Important part of language specification is

distinguishing valid from invalid programs

 Useful to define three classes of errors that make
programs invalid:

 Static errors

 Checked run-time errors

 Unchecked run-time errors

 Of course, even valid programs may not act as the
programmer intended!

Static Errors
Static errors can be detected before the program is

run (at compile or pre-interpretation time)

Includes lexical errors, syntactic errors, type
errors, etc.

Error checker can give precise feedback about
erroneous location in source code

Language semantics are usually defined only for
programs that have no static errors

Checked Run-time Errors
Checked run-time errors are violations that the language

implementation is required to detect and report at run time, in a
clean way.

E.g. in Scala or Java: division by 0, array bounds violations,
dereferencing a null pointer

Depending on language, might:

 cause an error message and abort

 raise an exception (which in principle can be caught by
program)

Language semantics must specify what run-time errors are
checked and how

Unchecked Run-time Errors
Unchecked run-time errors are violations that the

implementation does not have to detect.

Subsequent behavior of the computation is arbitrary
(language semantics typically silent about this)

No “fail-stop” behavior: error might not be manifested until
long after it occurs

E.g. in C: division by 0, array bounds violations,
dereferencing a null pointer, signed integer overflow,
unsequenced assignments, etc.

Safe languages like Scala, Java, Python have no such
errors!

Re-using names
What happens when the same name is bound twice in

the same scope?

If the bindings are to different kinds of things (e.g. types
vs. variables), can often disambiguate based on syntax,
so no problem arises (except maybe readability):

type Foo = Int
val Foo : Foo = 10
val Bar : Foo = Foo + 1 Scala

Here we say that types and variables live in different
name spaces

If the bindings are in the same namespace, typically an
error. But sometimes additional info (such as types) can
be used to pick the right binding; this is called overloading

Named scopes: modules, classes
Often, the construct that delimits a scope can itself

has a name, allowing the programer to manage
explicitly the visibility of the names inside it

NAMED SCOPES: MODULES, CLASSES, ...

Often, the construct that delimits a scope can itself have a name, allowing
the programmer to manage explicitly the visibility of the names inside it.

• OCaml modules example

module Env = struct
type env = (string * int) list
let empty : env = []
let rec lookup (e:env) (k:string) : int = ...

end
let e0 : Env.env = Env.empty in Env.lookup e0 "abc"

• Java classes example

class Foo {
static int x;
static void f(int x);

}
int z = Foo.f(Foo.x)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 11

NAMED SCOPES: MODULES, CLASSES, ...

Often, the construct that delimits a scope can itself have a name, allowing
the programmer to manage explicitly the visibility of the names inside it.

• OCaml modules example

module Env = struct
type env = (string * int) list
let empty : env = []
let rec lookup (e:env) (k:string) : int = ...

end
let e0 : Env.env = Env.empty in Env.lookup e0 "abc"

• Java classes example

class Foo {
static int x;
static void f(int x);

}
int z = Foo.f(Foo.x)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 11

OCaml modules

Java classes

Semantics via Environments
An environment is a mapping from names to their

bindings

The environment at a program point describes all
the bindings in scope at that point

Environment is extended when binding constructs
are evaluated

Environment is consulted to determine the
meaning of names during evaluation

Environments for everything
Environments can hold binding information for all kinds of names

a variable name is (typically) bound to location [in the store]
containing the variable

a value (constant) name may be bound directly bound to the
value [environment = store]

a function name is bound to description of the function’s
parameters and body

a type name is bound to a type description, including the
layout of its values

a class name is bound to a list of the class’s content

etc.

Variables, Environment, Store
In most imperative languages, variable names are bound to

locations, which in turn contain values.

So creating a variable involves two things:

1. allocating a new store location (and possibly initializing its
contents)

2. updating the environment to create a new binding from the
variable name to that location

For simplicity, we sometimes elide the difference between the
environment and the store, and think of names as being bound
directly to values (i.e. names are locations)

This works unless multiple names are aliased to a single
location; more about this later

Initialization Values
Many languages require variables to be declared before

they are used: this gives them a scope, perhaps a type,
and (maybe) an initial value given by an expression

Whether or not declarations are required, it is surely an
error to use any variable as an r-value unless it has been
previously assigned a value.

But many languages let us write such code, resulting
in runtime errors—either checked (e.g. as in Python)
or unchecked (e.g. as in C)

Simplest fix is to require an initial value to be given for
every declared variable (e.g. as in Scala)

Checking Initialization
Java takes a more sophisticated approach

variables do not need to be initialized at the point of
declaration, but

they must be initialized before they are used; otherwise a
static error occurs

a legal Java program

But checking
initialization before

use is uncomputable
in general! (Why?)

DEFINITE ASSIGNMENT

Yet in any reasonably powerful language, checking initialization before

use is an uncomputable problem. (Why?)

So the Java language reference manual carefully details a conservative,

computable, set of conditions, which every program must meet, that

guarantee there will be no uses before definition.

This is called the definite assignment property; just defining it takes 16

pages of the reference manual.

Some programs that do in fact initialize before use will be rejected

because they violate the conditions.

Legal example:

int a;
if (b) /* b is boolean */

a = 3;
else

a = 4;
a = a + 1;

Illegal example:

int a;
if (b)

a = 3;
if (!b)

a = 4;
a = a + 1;

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 6

Definite Assignment
So the Java definition carefully details a conservative,

computable, set of conditions, which every program must
meet, that guarantee the absence of uses before definition.

This is called the definite assignment property; just
defining it takes 16 pages of the reference manual.

an illegal Java program

Being conservative
means that some
programs that actually
do initialize before
use will be rejected

DEFINITE ASSIGNMENT

Yet in any reasonably powerful language, checking initialization before

use is an uncomputable problem. (Why?)

So the Java language reference manual carefully details a conservative,

computable, set of conditions, which every program must meet, that

guarantee there will be no uses before definition.

This is called the definite assignment property; just defining it takes 16

pages of the reference manual.

Some programs that do in fact initialize before use will be rejected

because they violate the conditions.

Legal example:

int a;
if (b) /* b is boolean */

a = 3;
else

a = 4;
a = a + 1;

Illegal example:

int a;
if (b)

a = 3;
if (!b)

a = 4;
a = a + 1;

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 6

Having these rules in the

Java definition ensures portability

