# CS558 <br> Programming Languages 

Fall 2023<br>Lecture 2b

Andrew Tolmach
Portland State University
© 1994-2023

## Semantics

Informal vs. Formal
Informal semantics
Descriptions in English (or other natural language)

Usually structured around grammar
Olmprecise, incomplete, inconsistent!

## Example: FORTRAN-II DO loops

Consider

## DO Statement

| GENERAL FORM | EXAMPLES |
| :--- | :--- |
| "DO $n \mathrm{i}=\mathrm{m}_{1}, \mathrm{~m}_{2}$ " or "DO | DO $30 \mathrm{I}=1,10$ |
| $\mathrm{n} \mathrm{i}=\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ ", where n | DO $30 \mathrm{I}=1, \mathrm{M}, 3$ |
| is a statement number, i is a |  |
| nonsubscripted fixed point var- |  |
| iable, and $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are |  |
| each either an unsigned fixed |  |
| point constant or a nonsubscripted |  |
| fixed point variable. If $\mathrm{m}_{3}$ is not |  |
| stated, it is assumed to be 1 . |  |

The DO statement is a command to execute repeatedly the statements which follow, up to and including the statement with statement number $n$. The first time, the statements are executed with $i=m_{1}$. For each succeeding execution, $i$ is increased by $m_{3}$. After they have been executed with i equal to the highest value in this sequence of values which does not exceed $\mathrm{m}_{2}$, control passes to the statement following the last statement in the range of the DO.

## "Experimental" semantics

What does language feature X mean?
Write a program that uses X , run it, and see!

- Implementation becomes standard of correctness

Requires reasoning from particular cases to general specification

Wholly non-portable, and subject to accidental change

## Semantics from Interpreters

In homework, we're building definitional interpreters for toy languages illustrating different PL constructs

Our main goal is to study the interpreter code to understand implementation issues associated with each construct

Interpreter also serves as semantic definition for each language
Defines meaning of language in terms of meaning of Scala
(Of course, requires knowing Scala's semantics too)
Since interpreters are executable, can also use for "experimental" semantics

## Axiomatic Semantics

Interpreters give a kind of operational semantics for imperative statements (= commands)

In axiomatic semantics, we give a logical interpretation to statements

The state of an imperative program is defined by the values of all its variables

We characterize a state by giving a logical predicate (or assertion) that is satisfied by the state's values

We define the semantics of statements by saying how they affect arbitrary predicates

Structured programming leads to simple axiomatic semantics!

## Triples involving Assertions <br> $$
\{P\} \operatorname{S}\{Q\}
$$

This Hoare triple claims that
-if precondition P is true before the execution of S
othen postcondition $Q$ is true after the execution of $S$, if $S$ terminates
-(triple doesn't say anything if S doesn't terminate)
Example:

$$
\{y \geq 3\} x:=y+1\{x \geq 4\}
$$

precondition


This triple's claim happens to be true!

## Examples of triples

Not all of these triples claim true things!

$$
\begin{aligned}
& \{x+y=c\} \text { while } \mathrm{x}>0 \text { do } \\
& \text { y := y + 1; } \\
& \mathrm{x}:=\mathrm{x}-1 \\
& \text { end }\{x+y=c\} \\
& \{y=2\} \mathrm{x}:=\mathrm{y}+1\{x=4\} \\
& \{y=2\} \mathrm{x}:=\mathrm{y}+\mathrm{z}\{x=4\} \\
& \text { \{True \} x := } 10 \text { \{ } x=10\} \\
& \text { \{ False \} } \mathrm{x}:=10\{x=20\}
\end{aligned}
$$

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


Each predicate P corresponds to a set $\mathrm{S}_{\mathrm{p}}$ of points in the (discrete) plane

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


Each predicate P corresponds to a set $\mathrm{S}_{\mathrm{p}}$ of points in the (discrete) plane

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


Each predicate P corresponds to a set $S_{p}$ of points in the (discrete) plane

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )

$P \wedge Q$ corresponds to $S_{P} \cap S_{Q}$

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )

$P \vee Q$ corresponds to $S_{p} \cup S_{Q}$

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


False corresponds to empty set

## Visualizing Predicates

(assume just two integer variables, $x$ and $y$ )


False corresponds to empty set
True corresponds to universal set

## Visualizing Triples



## Visualizing Invariants



## Axioms and Rules of Inference

How do we distinguish true triples from false ones?
Who's to say which ones are true?
It all depends on semantics of statements!
For a suitably structured language, we can give a fixed set of axioms and rules of inference, one for each kind of statement

True triples are those that can be logically deduced from these axioms and rules

Of course, axioms and rules should capture what we want the statements to mean, and they need to be as strong as possible

## Assignment Axiom

$$
\{P[E / x]\} \mathrm{x}:=\mathrm{E}\{P\}
$$

where $P[E / x]$ means $P$ with all instances of $x$ replaced by $E$.
This axiom may seem backwards at first, but it makes sense if we start from the postcondition. For example, if we want to show $x \geq 4$ after the execution of

$$
\mathrm{x}:=\mathrm{y}+1
$$

then the necessary precondition is $y+1 \geq 4$, i.e., $y \geq 3$.

## More Axioms and Rules for Statements

Skip Axiom

$$
\{P\} \operatorname{skip}\{P\}
$$

Conditional Rule

$$
\frac{\{P \wedge E\} \mathrm{S}_{1}\{Q\},\{P \wedge \neg E\} \mathrm{S}_{2}\{Q\}}{-\left\{P \text { if } \mathrm{E} \text { then } \mathrm{S}_{1} \text { else } \mathrm{S}_{2} \text { endif }\{Q\}\right.}
$$

Composition Rule

$$
\frac{\{P\} \mathrm{S}_{1}\{Q\},\{Q\} \mathrm{S}_{2}\{R\}}{\{P\} \mathrm{S}_{1} ; \mathrm{S}_{2}\{R\}}
$$

While Rule

$$
\{P \wedge E\} \mathrm{S}\{P\}
$$

$\{P\}$ while E do $\mathrm{S}\{P \wedge \neg E\}$

## Bookkeeping Rules

## Consequence Rule

$$
\begin{gathered}
P \Rightarrow P^{\prime},\left\{P^{\prime}\right\} \mathrm{S}\left\{Q^{\prime}\right\}, Q^{\prime} \Rightarrow Q \\
\{P\} \mathrm{S}\{Q\}
\end{gathered}
$$

Here $P \Rightarrow Q$ means that " $P$ implies $Q$," i.e., " $Q$ is true whenever $P$ is true," i.e. " $P$ is false or $Q$ is true." Hence we always have False $\Rightarrow Q$ for any $Q$ !

## Proof Tree Example

```
(ASSIGN)
\(\{x+y+1=c+1\}\)
    \(\mathrm{y}:=\mathrm{y}+1\)
        \(\{x+y=c+1\}\)
                            (CONSEQ)
\(\{x+y=c \wedge x!=0\}\)
    \(\mathrm{y}:=\mathrm{y}+1\)
        \(\{x+y=c+1\}\)
--------------(ASSIGN)
\(\{x-1+y=c\}\)
\(\mathrm{x}:=\mathrm{x}-1\)
\(\{x+y=c\}\)
\(-1 x+y=c+1\}\)
\(\mathrm{x}:=\mathrm{x}-1\)
\(\{x+y=c\}\)
                                    (COMP)
\[
\begin{array}{r}
\{x+y=c \wedge x!=0\} \\
\mathrm{y}:=\mathrm{y}+1 ; \mathrm{x}:=\mathrm{x}-1 \\
\{x+y=c\}
\end{array}
\]
\(\{x+y=c\}\)
while x != 0 do \(\mathrm{y}:=\mathrm{y}+1\); \(\mathrm{x}:=\mathrm{x}-1\) end
\[
\{x+y=c \wedge \neg x!=0\}
\]
(CONSEQ)
\[
\begin{aligned}
&\{x=c \wedge y=0\} \\
& \text { while } \mathrm{x}!=0 \text { do } \mathrm{y}:=\mathrm{y}+1 ; \mathrm{x}:= \mathrm{x}-1 \text { end } \\
&\{y=c\}
\end{aligned}
\]
```


## Annotated Program Example

Proof trees can get unwieldy fast.
Common alternative is to annotate programs with assertions/assumptions.

$$
\begin{aligned}
& \{x=c \wedge y=0\} \\
& \{x+y=c\} \\
& \text { while } \mathrm{x}!=0 \mathrm{do} \\
& \quad\{x+y=c \wedge x!=0\} \\
& \{x+y+1=c+1\} \\
& \mathrm{y}:=\mathrm{y}+1 ; \\
& \{x+y=c+1\} \\
& \{x-1+y=c\} \\
& \begin{array}{l}
\mathrm{x}:=\mathrm{x}-1 \\
\{x+y=c\} \\
\text { end } \\
\{x+y=c \wedge \neg x!=0\} \\
\{y=c\}
\end{array}
\end{aligned}
$$

Can obtain proof tree from annotated program

Must check that annotations are consistent with each other and with rules/axioms.

## Pros and cons of axiomatic semantics

Gives a very clean semantics for structured statements
But things get more complicated if we add features like
Oexpressions with side-effects
statements that break out of loops
procedures
non-trivial data structures and aliases
[See remainder of Gordon notes for more details]

## Applying Axiomatic semantics

Axiomatic viewpoint is very useful basis for formal proofs about program behavior

These are rarely done by hand
But there are beginning to be genuinely useful tools that support automated proof
e.g. Dafny (http://rise4fun.com/Dafny/tutorial)

Thinking in terms of assertions is good for informal reasoning too

Other styles of semantics use similar forms of rules

