
CS558
Programming Languages

Fall 2023
Lecture 2b

Andrew Tolmach
Portland State University

© 1994-2023

Semantics
Informal vs. Formal

Informal semantics

Descriptions in English (or other natural
language)

Usually structured around grammar

Imprecise, incomplete, inconsistent!

Example: FORTRAN-II DO loops

EXAMPLE: FORTRAN DO-LOOPS

“DO n i = m1,m2,m3

Repeat execution through statement n, beginning with i = m1,

incrementing by m3, while i is less than or equal to m2. If m3 is omitted, it

is assumed to be 1. m’s and i’s cannot be subscripted. m’s can be either

integer numbers or integer variables; i is an integer variable.”

- from DEC Fortran-II manual, 1974.

Consider:

DO 100 I = 10,9,1
. . .
100 CONTINUE

How many times is the body executed?

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 23

Consider

How many times is body
executed?

That depends…!

http://www.eah-jena.de/~kleine/history/languages/C28-6054-4_7090_FORTRANII.pdf

http://www.eah-jena.de/~kleine/history/languages/C28-6054-4_7090_FORTRANII.pdf

“Experimental” semantics
What does language feature X mean?

 Write a program that uses X, run it, and see!

 Implementation becomes standard of correctness

 Requires reasoning from particular cases to
general specification

 Wholly non-portable, and subject to accidental
change

Semantics from Interpreters
In homework, we’re building definitional interpreters for toy

languages illustrating different PL constructs

Our main goal is to study the interpreter code to understand
implementation issues associated with each construct

Interpreter also serves as semantic definition for each language

Defines meaning of language in terms of meaning of Scala

(Of course, requires knowing Scala’s semantics too)

Since interpreters are executable, can also use for
“experimental” semantics

Axiomatic Semantics
Interpreters give a kind of operational semantics for imperative

statements (= commands)

In axiomatic semantics, we give a logical interpretation to
statements

The state of an imperative program is defined by the values of
all its variables

We characterize a state by giving a logical predicate (or
assertion) that is satisfied by the state’s values

We define the semantics of statements by saying how they
affect arbitrary predicates

Structured programming leads to simple axiomatic semantics!

This Hoare triple claims that

if precondition P is true before the execution of S

then postcondition Q is true after the execution of S, if S
terminates

(triple doesn’t say anything if S doesn’t terminate)

Example:

Triples involving Assertions
TRIPLES INVOLVING ASSERTIONS

We write a Hoare triple

{ P } S { Q }

to mean that if the precondition P is true before the execution of S then

the postcondition Q will be true after the execution of S.

Note that the triple says nothing about what happens if S doesn’t

terminate. So we are only characterizing statements that terminate.

Examples of triples (not all stating true things!)

{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do
y := y + 1;
x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 30

TRIPLES INVOLVING ASSERTIONS

We write a Hoare triple

{ P } S { Q }

to mean that if the precondition P is true before the execution of S then

the postcondition Q will be true after the execution of S.

Note that the triple says nothing about what happens if S doesn’t

terminate. So we are only characterizing statements that terminate.

Examples of triples (not all stating true things!)

{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do
y := y + 1;
x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 30

precondition postcondition

This triple’s claim happens to be true!

Examples of triples
Not all of these triples claim true things!{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do
y := y + 1;
x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }

{ True } x := 10 { x = 10 }

{ False } x := 10 { x = 20 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 31

✔

✔

✔

X

X

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

(assume just two integer variables, x and y)

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x = 5 /\ y = 3

(assume just two integer variables, x and y)

Each predicate P corresponds to
a set SP of points in the (discrete) plane

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x = 5

(assume just two integer variables, x and y)

Each predicate P corresponds to
a set SP of points in the (discrete) plane

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

y = 3

(assume just two integer variables, x and y)

Each predicate P corresponds to
a set SP of points in the (discrete) plane

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

y = 3

x = 5

x = 5 /\ y = 3

(assume just two integer variables, x and y)

P /\ Q corresponds to SP ⋂ SQ

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

(assume just two integer variables, x and y)

P \/ Q corresponds to SP ∪ SQ

y = 3 \/ y = -1

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x+y = 6

(assume just two integer variables, x and y)

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x > y

(assume just two integer variables, x and y)

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x > y

(x = 5 \/ x = 6) /\ (y = 2 \/ y = 3)

(assume just two integer variables, x and y)

P ⇒ Q corresponds to SP ⊆ SQ

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x > y

(x = 5 \/ x = 6) /\ (y = 2 \/ y = 3)

(assume just two integer variables, x and y)

P ⇒ Q corresponds to SP ⊆ SQ

False corresponds to empty set

Visualizing Predicates

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x > y

(x = 5 \/ x = 6) /\ (y = 2 \/ y = 3)

(assume just two integer variables, x and y)

P ⇒ Q corresponds to SP ⊆ SQ

False corresponds to empty set
True corresponds to universal set

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x+1 > y+1

Visualizing Triples

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x > y+1

x := x+1

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

Visualizing Invariants

x

y

1 2 3 4 5 6 7-1-2-3 0

1

2

3

4

5

6

7

-1

-2

-3

x := x+1;
y := y-1

x+y = 6 x+y = 6

Axioms and Rules of Inference
How do we distinguish true triples from false ones?

Who’s to say which ones are true?

It all depends on semantics of statements!

For a suitably structured language, we can give a fixed set of
axioms and rules of inference, one for each kind of statement

True triples are those that can be logically deduced from
these axioms and rules

Of course, axioms and rules should capture what we want
the statements to mean, and they need to be as strong as
possible

ASSIGNMENT AXIOM

{ P [E/x] } x := E { P }

where P [E/x] means P with all instances of x replaced by E.

This axiom may seem backwards at first, but it makes sense if we start

from the postcondition. For example, if we want to show x ≥ 4 after the

execution of

x := y + 1

then the necessary precondition is y + 1 ≥ 4, i.e., y ≥ 3.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 33

MORE AXIOMS AND RULES FOR STATEMENTS

Skip Axiom

{ P } skip { P }

Conditional Rule

{ P ^ E } S1 { Q }, { P ^ ¬ E } S2 { Q }

--

{ P } if E then S1 else S2 endif { Q }

Composition Rule

{ P } S1 { Q }, { Q } S2 { R }

{ P } S1; S2 { R }

While Rule

{ P ^ E } S { P }

{ P } while E do S { P ^ ¬ E }

PSU CS558 F’16 LECTURE 2 © 1994–2016 ANDREW TOLMACH 33

BOOKKEEPING RULES

Consequence Rule

P ⇒ P ′, { P ′ } S { Q′ }, Q′ ⇒ Q

{ P } S { Q }

Here P ⇒ Q means that “P implies Q,” i.e., “Q is true whenever P is true,”

i.e. “P is false or Q is true.” Hence we always have False ⇒ Q for any Q !

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 35

PROOF TREE EXAMPLE

-----------------(ASSIGN) -----------------(ASSIGN)
{x+ y + 1 = c+ 1} {x− 1 + y = c}

y := y+1 x := x-1
{x+ y = c+ 1} {x+ y = c}

---------------------(CONSEQ) ----------------(CONSEQ)
{x+ y = c ∧ x ! = 0} {x+ y = c+ 1}

y := y+1 x := x-1
{x+ y = c+ 1} {x+ y = c}

---(COMP)
{x+ y = c ∧ x ! = 0}

y := y+1; x := x-1
{x+ y = c}

--(WHILE)
{x+ y = c}

while x != 0 do y := y+1; x := x-1 end
{x+ y = c ∧ ¬ x ! = 0}

--(CONSEQ)
{x = c ∧ y = 0 }

while x != 0 do y := y+1; x := x-1 end
{y = c}

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 36

Annotated Program Example
Proof trees can get unwieldy fast.

Common alternative is to annotate programs with assertions/assumptions.

ANNOTATED PROGRAM EXAMPLE

Proof trees can be unwieldy. Because the structure of the tree

corresponds directly to the structure of the program code, it is common to

use an alternative representation of proofs in which we annotate

programs with assertions/assumptions.

{x = c ∧ y = 0}
{x+ y = c}
while x != 0 do

{x+ y = c ∧ x ! = 0}
{x+ y + 1 = c+ 1}
y := y + 1;
{x+ y = c+ 1}
{x− 1 + y = c}
x := x - 1
{x+ y = c}

end
{x+ y = c ∧ ¬ x ! = 0}
{y = c}

To verify that this is a valid proof, we have to check that the annotations

are consistent with each other and with the rules and axioms.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 37

Can obtain proof tree from
annotated program

Must check that annotations are
consistent with each other and with
rules/axioms.

Pros and cons of axiomatic semantics
Gives a very clean semantics for structured statements

But things get more complicated if we add features like

expressions with side-effects

statements that break out of loops

procedures

non-trivial data structures and aliases

[See remainder of Gordon notes for more details]

Applying Axiomatic semantics
Axiomatic viewpoint is very useful basis for formal

proofs about program behavior

These are rarely done by hand

But there are beginning to be genuinely useful tools
that support automated proof

e.g. Dafny (http://rise4fun.com/Dafny/tutorial)

Thinking in terms of assertions is good for informal
reasoning too

Other styles of semantics use similar forms of rules

http://rise4fun.com/Dafny/tutorial

