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Semantics
Informal vs. Formal

Informal semantics

Descriptions in English (or other natural 
language) 

Usually structured around grammar

Imprecise, incomplete, inconsistent!



Example: FORTRAN-II DO loops

EXAMPLE: FORTRAN DO-LOOPS

“DO n i = m1,m2,m3

Repeat execution through statement n, beginning with i = m1,

incrementing by m3, while i is less than or equal to m2. If m3 is omitted, it

is assumed to be 1. m’s and i’s cannot be subscripted. m’s can be either

integer numbers or integer variables; i is an integer variable.”

- from DEC Fortran-II manual, 1974.

Consider:

DO 100 I = 10,9,1
. . .
100 CONTINUE

How many times is the body executed?
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Consider

How many times is body 
executed?

That depends…!

http://www.eah-jena.de/~kleine/history/languages/C28-6054-4_7090_FORTRANII.pdf

http://www.eah-jena.de/~kleine/history/languages/C28-6054-4_7090_FORTRANII.pdf


“Experimental” semantics
What does language feature X mean?

 Write a program that uses X, run it, and see!

 Implementation becomes standard of correctness

 Requires reasoning from particular cases to 
general specification

 Wholly non-portable, and subject to accidental 
change



Semantics from Interpreters
In homework, we’re building definitional interpreters for toy 

languages illustrating different PL constructs

Our main goal is to study the interpreter code to understand 
implementation issues associated with each construct

Interpreter also serves as semantic definition for each language

Defines meaning of language in terms of meaning of Scala

(Of course, requires knowing Scala’s semantics too)

Since interpreters are executable, can also use for 
“experimental” semantics



Axiomatic Semantics
Interpreters give a kind of operational semantics for imperative 

statements (= commands)

In axiomatic semantics, we give a logical interpretation to 
statements

The state of an imperative program is defined by the values of 
all its variables

We characterize a state by giving a logical predicate (or 
assertion) that is satisfied by the state’s values

We define the semantics of statements by saying how they 
affect arbitrary predicates

Structured programming leads to simple axiomatic semantics!



This Hoare triple claims that  

if precondition P is true before the execution of S 

then postcondition Q is true after the execution of S, if S 
terminates  

(triple doesn’t say anything if S doesn’t terminate)

Example: 

Triples involving Assertions
TRIPLES INVOLVING ASSERTIONS

We write a Hoare triple

{ P } S { Q }

to mean that if the precondition P is true before the execution of S then

the postcondition Q will be true after the execution of S.

Note that the triple says nothing about what happens if S doesn’t

terminate. So we are only characterizing statements that terminate.

Examples of triples (not all stating true things!)

{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do
y := y + 1;
x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }
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precondition postcondition 

This triple’s claim happens to be true! 



Examples of triples
Not all of these triples claim true things!{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do
y := y + 1;
x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }

{ True } x := 10 { x = 10 }

{ False } x := 10 { x = 20 }
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Axioms and Rules of Inference
How do we distinguish true triples from false ones?

Who’s to say which ones are true?

It all depends on semantics of statements!

For a suitably structured language, we can give a fixed set of 
axioms and rules of inference, one for each kind of statement

True triples are those that can be logically deduced from 
these axioms and rules

Of course, axioms and rules should capture what we want 
the statements to mean, and they need to be as strong as 
possible



ASSIGNMENT AXIOM

{ P [E/x] } x := E { P }

where P [E/x] means P with all instances of x replaced by E.

This axiom may seem backwards at first, but it makes sense if we start

from the postcondition. For example, if we want to show x ≥ 4 after the

execution of

x := y + 1

then the necessary precondition is y + 1 ≥ 4, i.e., y ≥ 3.
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MORE AXIOMS AND RULES FOR STATEMENTS

Skip Axiom

{ P } skip { P }

Conditional Rule

{ P ^ E } S1 { Q }, { P ^ ¬ E } S2 { Q }

----------------------------------------------

{ P } if E then S1 else S2 endif { Q }

Composition Rule

{ P } S1 { Q }, { Q } S2 { R }

--------------------------------

{ P } S1; S2 { R }

While Rule

{ P ^ E } S { P }

---------------------------------

{ P } while E do S { P ^ ¬ E }
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BOOKKEEPING RULES

Consequence Rule

P ⇒ P ′, { P ′ } S { Q′ }, Q′ ⇒ Q
------------------------------------

{ P } S { Q }

Here P ⇒ Q means that “P implies Q,” i.e., “Q is true whenever P is true,”

i.e. “P is false or Q is true.” Hence we always have False ⇒ Q for any Q !
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PROOF TREE EXAMPLE

-----------------(ASSIGN) -----------------(ASSIGN)
{x+ y + 1 = c+ 1} {x− 1 + y = c}

y := y+1 x := x-1
{x+ y = c+ 1} {x+ y = c}

---------------------(CONSEQ) ----------------(CONSEQ)
{x+ y = c ∧ x ! = 0} {x+ y = c+ 1}

y := y+1 x := x-1
{x+ y = c+ 1} {x+ y = c}

---------------------------------------------------------(COMP)
{x+ y = c ∧ x ! = 0}

y := y+1; x := x-1
{x+ y = c}

----------------------------------------------------------(WHILE)
{x+ y = c}

while x != 0 do y := y+1; x := x-1 end
{x+ y = c ∧ ¬ x ! = 0}

--------------------------------------------------------(CONSEQ)
{x = c ∧ y = 0 }

while x != 0 do y := y+1; x := x-1 end
{y = c}
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Annotated Program Example
Proof trees can get unwieldy fast. 

Common alternative is to annotate programs with assertions/assumptions.

ANNOTATED PROGRAM EXAMPLE

Proof trees can be unwieldy. Because the structure of the tree

corresponds directly to the structure of the program code, it is common to

use an alternative representation of proofs in which we annotate

programs with assertions/assumptions.

{x = c ∧ y = 0}
{x+ y = c}
while x != 0 do

{x+ y = c ∧ x ! = 0}
{x+ y + 1 = c+ 1}
y := y + 1;
{x+ y = c+ 1}
{x− 1 + y = c}
x := x - 1
{x+ y = c}

end
{x+ y = c ∧ ¬ x ! = 0}
{y = c}

To verify that this is a valid proof, we have to check that the annotations

are consistent with each other and with the rules and axioms.
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Can obtain proof tree from 
annotated program 

Must check that annotations are 
consistent with each other and with 
rules/axioms.



Pros and cons of axiomatic semantics
Gives a very clean semantics for structured statements

But things get more complicated if we add features like 

expressions with side-effects 

statements that break out of loops 

procedures 

non-trivial data structures and aliases

[See remainder of Gordon notes for more details]



Applying Axiomatic semantics
Axiomatic viewpoint is very useful basis for formal 

proofs about program behavior

These are rarely done by hand

But there are beginning to be genuinely useful tools 
that support automated proof

e.g. Dafny (http://rise4fun.com/Dafny/tutorial)

Thinking in terms of  assertions is good for informal 
reasoning too

Other styles of semantics use similar forms of rules

http://rise4fun.com/Dafny/tutorial

