
CS558
Programming Languages

Fall 2023
Lecture 2a

Andrew Tolmach
Portland State University

© 1994-2023

This week’s lab: Expressions
 Inspired by familiar mathematical notation

 Usually have recursive (tree-like) structure

 Can be used to define values in many domains

numbers, booleans, strings, lists, sets, etc.

 “Declarative” syntax: tells what to compute rather than how

 Abstracts away from evaluation order* and use of
temporaries

 compare with, e.g., stack machine

* to some extent: depends on language

Imperative Languages
 Most commonly-used

languages are
imperative

Consist of sequence of
commands that alter
the state of the world

State = values of
program variables and
external environment
(e.g. files, screen, etc.)

http://smarteregg.com/dont-tell-me-what-to-do-now-show-me-what-i-need-to-be-doing/

Running Imperative Programs
High-level imperative languages mimic style of the

underlying Von Neumann machine architecture

machine programs are sequences of instructions
that modify registers and memory locations

Compiling imperative languages to machine code is
relatively straightforward

variables are mapped to machine locations

commands (operations) are mapped to (multiple)
machine instructions

Reactive Programs
Imperative languages are also natural for writing

reactive programs that interact with the real world

Examples:

Reading mouse clicks and modifying the contents of
a display

Communicating data on a network link

Controlling a set of sensors and relays in an external
device

Often structured as event-response loops

Statements are Commands
 Elementary (atomic) statements

Assignment

I/O operations

Function/Procedure calls

Atomic from perspective of caller

Compound statements

Built recursively from sub-statements, forming
tree-like structure

Assignment
Most primitive command: store a value into a location

In simplest form, location is associated with a variable

but might be an array or record element, etc.

In most languages, a variable name means different things on the left-
hand side (LHS) and right-hand side (RHS) of an assignment.

On LHS, name denotes the location of the variable, into which the
value of the RHS expression is to be stored. Here we say name is an
l-value.

On RHS, name denotes the current value contained in the location,
i.e. it indicates an implicit dereference operation. Here we say the
name is an r-value.

a := 42

a := a + 5

a[x+2] := 42

Assignment Expressions

In some languages, assignment is an expression

 and expressions can act as atomic statements

But every expression must define a value! Common
choices for the value of an assignment:

 value of LHS after assignment

special “no information” value e.g., in Scala: ():Unit

 C/C++/Java popularized use of plain = for assignment
and == for relational equality: a truly bad idea, because
both form expressions and they are easy to confuse

b := (a := 42) f(c := 10)

Order of Operations
We’ve noted that order of operations for expressions is

usually under-specified

Parse tree doesn’t completely fix order

But this causes problems if expressions can be
assignments:

What is the result in b?

It can be anything! This C program has “undefined behavior” and
the compiler can generate anything it wants (for the entire program!)

…or the compiler could give a warning or error message, but
many compilers do not.

ANSI C99

PROBLEMS WITH ORDER OF EVALUATION

In many langauges, order of expression evaluation is under-specified

(precedence and associativity don’t always fix order).

ANSI C example:

a = 0;
b = (a = a + 1) - (a = a + 2);

What’s the result in b?

Answer: could be anything! In C, the order of evaluation of the operands

to + is undefined. Consequently, the meaning of this program is also

undefined, and a compiler is free to return any value it wants.

In fact, this is an illegal C program because of its ambiguous meaning,

but many compilers will accept it without even giving a warning.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 8

Hidden side-effects
Even without explicit assignment expressions, expression

evaluation order can affect behavior:

Answer depends on evaluation order for function parameters, which
is compiler-dependent (though “unspecified” rather than “undefined”)

This flexibility may let compiler generate more efficient code

But most modern languages are moving towards precise
specification of order (e.g. left-to-right)

ANSI C99

HIDDEN SIDE EFFECTS

The impact of evaluation order on program behavior is not always

obvious, because side-effects can occur at a distance:

int a = 0;
int h (int x, int y) { return x; }
int f (int z) { a = z; return 0; }
h(a,f(2)); // = 0 or 2 ??

Answer: Depends on evaluation order for function actual parameters,

which is language-dependent (and possibly unspecified).

Keeping expression evaluation order or argument evaluation order

undefined sometimes lets compiler generate more efficient code.

But most modern languages (e.g., Java) have moved towards precise

definition of evaluation order within expressions (typically left-to-right).

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 9

Imperative code is infectious

Root of problem is that imperative code can be hidden within
function definitions (“side-effects”)

If any part of the code might be imperative, we must worry
about order of evaluation in all parts of the code

In a few languages, the type system helps us distinguish
functions that have side-effects from "pure" ones that don't

ANSI C99

HIDDEN SIDE EFFECTS

The impact of evaluation order on program behavior is not always

obvious, because side-effects can occur at a distance:

int a = 0;
int h (int x, int y) { return x; }
int f (int z) { a = z; return 0; }
h(a,f(2)); // = 0 or 2 ??

Answer: Depends on evaluation order for function actual parameters,

which is language-dependent (and possibly unspecified).

Keeping expression evaluation order or argument evaluation order

undefined sometimes lets compiler generate more efficient code.

But most modern languages (e.g., Java) have moved towards precise

definition of evaluation order within expressions (typically left-to-right).

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 9

blogbv2.altervista.org

Structured Control Flow
All modern higher-level imperative languages are

designed to support structured programming

Syntactic structure of program text corresponds to
dynamic flow of control during execution

Originally proposed as improvement over
unreadable “spaghetti code” that is easy to
produce using labels and jumps

Edsger W. Dijkstra, “go to statement considered harmful,”
CACM, 11(3), Mar. 1968, 147-148.

http://blogbv2.altervista.org

Small set of statement kinds
Use small collection of (recursively defined)

compound statements to describe control flow

Sequential composition: do a sequence of
commands

Selection: do one of several alternative commands

Iteration: do a command repeatedly

KINDS OF COMPOUND STATEMENTS

• Sequential composition: form a statement from a sequence of

statements, e.g.

(Java) { x = 2; y = x + 4;}
(Pascal) begin x := 2; y := x + 4; end

• Selection: execute one of several statements, e.g.,

(Java) if (x < 0) y = x + 1; else z = y + 2;

• Iteration: repeatedly execute a statement, e.g.,

(Java) while (x > 10) output(x--);

(Pascal) for x := 1 to 12 do output(x*2);

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 11

KINDS OF COMPOUND STATEMENTS

• Sequential composition: form a statement from a sequence of

statements, e.g.

(Java) { x = 2; y = x + 4;}
(Pascal) begin x := 2; y := x + 4; end

• Selection: execute one of several statements, e.g.,

(Java) if (x < 0) y = x + 1; else z = y + 2;

• Iteration: repeatedly execute a statement, e.g.,

(Java) while (x > 10) output(x--);

(Pascal) for x := 1 to 12 do output(x*2);

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 11

KINDS OF COMPOUND STATEMENTS

• Sequential composition: form a statement from a sequence of

statements, e.g.

(Java) { x = 2; y = x + 4;}
(Pascal) begin x := 2; y := x + 4; end

• Selection: execute one of several statements, e.g.,

(Java) if (x < 0) y = x + 1; else z = y + 2;

• Iteration: repeatedly execute a statement, e.g.,

(Java) while (x > 10) output(x--);

(Pascal) for x := 1 to 12 do output(x*2);

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 11

Sequential composition
Simplest way to combine commands: just write one

after another

Order obviously matters!

(What about parallel composition?)

Can also have sequential composition of expressions

e1;e2 means: evaluate e1; throw away the result;
then evaluate e2

obviously only interesting if e1 has side-effects

Selection: if
Basic selection statement based on booleans

compiles to

pseudo assembly code

SELECTION: IF

The basic selection statement is based on boolean values

if e then s1 else s2

which translates to

evaluate e into t
cmp t,true
brneq l1
s1
br l2

l1: s2
l2:

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 12

SELECTION: IF

The basic selection statement is based on boolean values

if e then s1 else s2

which translates to

evaluate e into t
cmp t,true
brneq l1
s1
br l2

l1: s2
l2:

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 12

Structured statements
 have simple equivalents in

terms of
labels + jumps

Selection: case
 Generalizes boolean conditionals to types with

larger domains

 Note that the ci are constants

Choice of most efficient compilation method depends
on density of the ci within the domain of possible
values for e and on whether e’s type is ordered

SELECTION: CASE

To test types with more than two values, multi-way selections against

constants are appropriate:

case e of
c1 : s1
c2 : s2
. . .
cn : sn
default : sd

The most efficient translation of case statements depends on density of

the value c1, c2, . . . , cn within the range of possible values for e.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 13

Sparse case compilation

is equivalent to

This is just a linear search (O(n) time)
If e’s type is ordered, we can do better with a binary search

 (O(log n) time)

SELECTION: CASE

To test types with more than two values, multi-way selections against

constants are appropriate:

case e of
c1 : s1
c2 : s2
. . .
cn : sn
default : sd

The most efficient translation of case statements depends on density of

the value c1, c2, . . . , cn within the range of possible values for e.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 13

SPARSE CASES

For sparse distributions, it’s best to translate the case just as if it were:

t := e;
if t = c1 then

s1
else if t = c2 then

s2
else

. . .
else if t = cn then

sn
else

sd

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 14

Dense case compilation
If labels are dense in the range [c1,cn], it’s better to

use a jump table (O(1) time):

compiles to

SELECTION: CASE

To test types with more than two values, multi-way selections against

constants are appropriate:

case e of
c1 : s1
c2 : s2
. . .
cn : sn
default : sd

The most efficient translation of case statements depends on density of

the value c1, c2, . . . , cn within the range of possible values for e.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 13

DENSE CASES

For a dense set of labels in the range [c1, cn], it’s better to use a jump

table:

evaluate e into t
cmp t,c1
brlt ld
cmp t,cn
brgt ld
sub t,c1,t
add table,t,t
br *t

table: l1
l2
...
ln

l1: s1
br done

l2: s2
br done
. . .

ln: sn
br done

ld: sd
done:

The best approach for a given case may involve a combination of these

two techniques. Compilers differ widely in the quality of the code

generated for case.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 15

Iteration: while and repeat

compiles to

is equivalent to

ITERATION

The basic loop construct is

while e do s

corresponding to:

top: evaluate e into t
cmp t,true
brneq done
s
br top

done:

A commonly-supported variant is to move the test to the bottom:

repeat s until e

which is equivalent to:

s;
while not e do s

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 16

ITERATION

The basic loop construct is

while e do s

corresponding to:

top: evaluate e into t
cmp t,true
brneq done
s
br top

done:

A commonly-supported variant is to move the test to the bottom:

repeat s until e

which is equivalent to:

s;
while not e do s

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 16

ITERATION

The basic loop construct is

while e do s

corresponding to:

top: evaluate e into t
cmp t,true
brneq done
s
br top

done:

A commonly-supported variant is to move the test to the bottom:

repeat s until e

which is equivalent to:

s;
while not e do s

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 16

ITERATION

The basic loop construct is

while e do s

corresponding to:

top: evaluate e into t
cmp t,true
brneq done
s
br top

done:

A commonly-supported variant is to move the test to the bottom:

repeat s until e

which is equivalent to:

s;
while not e do s

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 16

Counted loops
Since iterating through a range of numbers is very

common, many languages offer a dedicated
statement,e.g.

The detailed semantics vary, and can be tricky (e.g.
can s change i ?)

C/C++/Java offer a more general-purpose statement

is equivalent to

COUNTED LOOPS

Since iterating a definite number of times is very common, languages often

offer a dedicated statement, with basic form:

for i := e1 to e2 do s

Here s is executed repeatedly with i taking on the values e1, e1 + 1, . . . ,

e2 in each successive iteration.

The detailed semantics of this statement vary, and can be tricky. Often, s
is prohibited from modifying i, which (under certain other conditions)

guarantees that the loop will be executed exactly e2 − e1 + 1 times.

C/C++/Java have a much more general version of for, which guarantees

much less about the behavior of the loop:

for (e1; e2; e3) s;

is exactly equivalent to:

e1; while (e2) { s; e3 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 20

COUNTED LOOPS

Since iterating a definite number of times is very common, languages often

offer a dedicated statement, with basic form:

for i := e1 to e2 do s

Here s is executed repeatedly with i taking on the values e1, e1 + 1, . . . ,

e2 in each successive iteration.

The detailed semantics of this statement vary, and can be tricky. Often, s
is prohibited from modifying i, which (under certain other conditions)

guarantees that the loop will be executed exactly e2 − e1 + 1 times.

C/C++/Java have a much more general version of for, which guarantees

much less about the behavior of the loop:

for (e1; e2; e3) s;

is exactly equivalent to:

e1; while (e2) { s; e3 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 20

COUNTED LOOPS

Since iterating a definite number of times is very common, languages often

offer a dedicated statement, with basic form:

for i := e1 to e2 do s

Here s is executed repeatedly with i taking on the values e1, e1 + 1, . . . ,

e2 in each successive iteration.

The detailed semantics of this statement vary, and can be tricky. Often, s
is prohibited from modifying i, which (under certain other conditions)

guarantees that the loop will be executed exactly e2 − e1 + 1 times.

C/C++/Java have a much more general version of for, which guarantees

much less about the behavior of the loop:

for (e1; e2; e3) s;

is exactly equivalent to:

e1; while (e2) { s; e3 }

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 20

Data-driven Iteration
Many modern languages support generalized for

loops that can iterate through any collection

 In some languages this is implemented using
iterators -- data objects that keep a pointer ("cursor")
into the collection that can be advanced one element
at a time

 Code above is
shorthand for this:

val s = List(1,3,42,7)
for (v <- s)  
 print(v+1) // prints 2 4 43 8 Scala

val iter = s.iterator
while (iter.hasNext())
 print(iter.next()+1)

almost Scala

Loop exits

compiles to

It can be useful to break out of the middle of a loop

C/C++/Java break is unconditional form of exit
These languages also have a continue statement
that jumps back to the top of the loop

LOOP EXITS

It is sometimes desirable to exit from the middle of a loop:

loop
s1;
exitif e;
s2

end

is equivalent to:

top: s1
evaluate e into t
cmp t,true
breq done
s2
br top

done:

C/C++/Java have an unconditional form of exit, called break. They also

have a continue statement that jumps back to the top of the loop.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 17

LOOP EXITS

It is sometimes desirable to exit from the middle of a loop:

loop
s1;
exitif e;
s2

end

is equivalent to:

top: s1
evaluate e into t
cmp t,true
breq done
s2
br top

done:

C/C++/Java have an unconditional form of exit, called break. They also

have a continue statement that jumps back to the top of the loop.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 17

USES FOR goto?

An efficient program with goto:

int i;
for (i = 0; i < n; i++)
if (a[i] == k)

goto found;
n++;
a[i] = k;
b[i] = 0;

found:
b[i]++;

In most languages (e.g., Modula, C/C++) there is no equivalently efficient

solution without goto.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 18

Uses for goto ?
An efficient program using goto

In most languages, there is no equivalently
efficient program without goto: must add a flag variable

transfer control to
point well past end
of the loop

C

MULTI-LEVEL break

But we can do as well in Java, using a named, multi-level break:

int i;
search:

{ for (i = 0; i < n; i++)
if (a[i] == k)

break search;
n++;
a[i] = k;
b[i] = 0;

}
b[i]++;

(This construct was invented by Knuth in the 1960’s, but not adopted into

a mainstream language for about 30 years!)

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 19

Multi-level break
But we can do as well in Java (or JavaScript, Go, ...),
using a named, multi-level break statement

This construct was invented by Don Knuth in the 1960’s
but not adopted into a mainstream language for 30 years!

transfer control to
point just past end of
named block

Java

The COME FROM statement

R.Lawrence Clark, “A Linguistic contribution to
GOTO-less programming,” Datamation, 19(2), 1973, 62-63.

THE COME FROM STATEMENT

10 J = 1
11 COME FROM 20
12 PRINT J

STOP
13 COME FROM 10
20 J = J + 2

(R. Lawrence Clark, “A linguistic contribution to GOTO-less

programming,” Datamation, 19(12), 1973, 62-63.)

But is this really a joke?

Even with a GO TO, we must examine both the branch and the target label

to understand the programmer’s intent.

PSU CS558 F’16 LECTURE 2 c© 1994–2016 ANDREW TOLMACH 21

 A notorious joke!

But with a serious point: even with an ordinary GOTO, we must
examine the whole label/branch structure of the program to
understand its behavior

