
CS558
Programming Languages

Fall 2023
Lecture 1b

Andrew Tolmach
Portland State University

© 1994-2023

Describing Languages

Form: what does
program look like?

Meaning: what does
program do?

Easy! Harder!Semantics

www.computerhope.com

imgs.xkcd.com/comics/flowchart.png

Syntax

www.zipcodewilmington.com

http://computerhope.com
http://imgs.xkcd.com/comics/flowchart.png
http://www.zipcodewilmington.com

Describing Syntax

Concrete
Describes legal
form and structure
of programs
Describes what
programs look like
on page or screen
Usually defined by
a context-free
grammar (CFG)

Abstract
Describes essential
contents of
programs as they
might look internally
(in a compiler or
interpreter)
Can be defined by
a tree grammar

PL syntax before symbolic grammars

P.J. Landin, The Next 700 Programming Languages, CACM 9(3), Mar. 1966

PL syntax with CFGs

Clear, compact, precise

Single definition supports recognition, generation, analysis, …

Captures recursive structure, which is very common in PLs

Rich theory with connections to automatic parser generation,
push-down automata, etc.

Context-free Grammars (CFGs)
Formally defined by

a set of terminal symbols e.g. {(,)}

a set of nonterminal variables, which represent
sets of strings of terminals

 e.g. {S,T}
 one of which is the start symbol (e.g. S)

a set of production rules that map nonterminals
to strings of terminals and nonterminals

 e.g. { S → (S), S → S S, S → ε }
empty string

Derivations
The language L(G) defined by a grammar G is the set of
sentences (strings of terminals) that can be derived by
applying production rules, beginning from the start symbol.

A derivation can be represented as a parse tree.

The grammar specifies the shapes of possible parse trees.

Existence of a parse tree for a sentence shows that
sentence is in L(G).

A parse tree imposes hierarchical structure on the parsed
sentence.

Example parse tree
Root is start

symbol

Leaves are
terminals (or ε)

Derived sentence is given by
reading leaves left to right

Children of a node
are given by

right-hand side
of a ruleInternal nodes

are nonterminals

S → (S)
S → S S
S → εUse of S → (S)

Use of S →ε

Tree shows (()()) ∈ L(G)

G

S

()S

S S

(())S S

ε ε

Linear Derivation Sequences

We can capture the content of a parse tree as a linear
sequence of individual derivation steps, where each step
expands a single nonterminal by applying some grammar
rule.

When there is more than one nonterminal, we can choose
any one of them to expand next. This means there can be
multiple different linear sequences for the same tree.

E.g. here are two of the possible sequences for the given
parse tree:

S ⇒(S) ⇒ (SS) ⇒ ((S)S) ⇒ (()S) ⇒ (()(S)) ⇒ (()())

S ⇒(S) ⇒ (SS) ⇒ (S(S)) ⇒ (S()) ⇒ ((S)()) ⇒ (()())

All sequences for a given tree illustrate the same parse
structure.

S

()S

S S

(())S S

ε ε

Some grammars
let us build
multiple different
parse trees for
the same
sentence.

Such grammars
are said to be
ambiguous.

Ambiguous Grammars S → (S)
S → S S
S → ε

S

S

ε

S

()S

S S

(())S S

ε ε
Both trees show (()()) ∈ L(G),
but they impose different structure.

G

S

()S

S S

(())S S

ε ε

Alternative Grammars
How might we describe the entire language L(G)
informally?

Another grammar for the same language is

S → (S)
S → S S
S → ε

S → (S)S
S → ε

S

()S

()S

ε

S

εS

()S S

ε ε

Tree showing that
 (()()) ∈ L(G’)

G

G’

It is possible to prove that
L(G) = L(G’)

But the two grammars
impose very different
structures on sentences.

Recap of Key CFG Points
 In an ambiguous grammar, the same sentence can have multiple parse

trees

 and hence multiple alternative structures

This is generally a bad thing for programming language grammars

The same parse tree can correspond to multiple linear derivations

Depends on the nonterminal we choose to expand first

Not important: all these derivations generate the same structure

The same language can have multiple grammars

Each grammar may impose a different structure on a given sentence

For programming language grammars, choice of structure is important

Defining CFGs for real PLs
Use a richer set of terminal symbols called tokens

Strings of ASCII or Unicode characters

May be generic, i.e. representing sets of strings

 Generic token carries an attribute value

 e.g., ID tokens carry the actual identifier string,
NUM tokens carry the value of a numeric literal

 CFG is usually notated using some variant of BNF

 BNF (Backus-Naur Form)
Invented ca. 1960 for Algol-60 language

empty string

nonterminals

terminals

instead of →

 EBNF (Extended BNF)

Many different variants of EBNF exist

nonterminals
More compact

terminal

terminal

optional

alternative

0 or more

grouping

Syntax Analysis (Parsing)
A parser recognizes syntactically legal programs (as defined by a

grammar) and rejects illegal ones.

A successful parse captures the hierarchical structure of the
program (expressions, blocks, etc.)

Tree produced by parsing is basis for further processing (e.g.
type checking, interpretation, code generation,…)

Failed parse provides error feedback to the user showing
where and why the program was illegal

For most modern PLs, an efficient parser can be generated
automatically from CFG

Only true for a restricted class of grammars

E

E E+

E E*id a

id b id c

E

E E

+E E

*

id a id b

id c

Expression Grammars
Expressions are at the heart of most high-level

languages, and illustrate important CFG issues

A naive grammar for arithmetic expressions
generic token
representing

identifiers

Ambiguous! Here are two parse trees for a+b*c:

we might think
left tree is “correct”
one, but nothing in
grammar says so

“do + first”“do * first”

E ::= E + E | E - E | E * E | E / E | (E) | idx

Arithmetic Ambiguity

To disambiguate grammars like this, we must choose desired order
of operations for any expression of the form Ea op1 Eb op2 Ec

Precedence: which operation (op1 or op2) is done first?

Associativity: if op1 and op2 have the same precedence, does Eb
“associate” with the operator to its left or to its right?

 I.e., is the expression equivalent to (Ea op1 Eb) op2 Ec
or to Ea op1 (Eb op2 Ec) ?

The “usual” rules (based on common usage in written math) give *
and / higher precedence than + and - and make all these operators
left-associative. But this is a matter of choice in language design.

E ::= E + E | E - E | E * E | E / E | (E) | idx

E

E T

E T T F

*

-

+

*

T F

F

id a

id b

id c id d

id eF FT

Rewriting Arithmetic Grammars
One way to enforce desired precedence/associativity

is to build them into the grammar using extra
nonterminals, e.g.

E ::= E + T | E - T | T
T ::= T * F | T / F | F
F ::= (E) | idx

Example parse for a*b-c+d*e:

Why does this work?

Limitations of CFGs
CFGs do a great job at describing the syntactic structure of

programming languages and identifying syntactically legal programs

But there are many useful characteristics of legal programs that
cannot be captured in a grammar (no matter how clever we are)

e.g. in many languages, variables must be declared before they
are used, but this property cannot be captured in a CFG

So checking program legality typically requires more than syntax
analysis

Most compilers/interpreters use a secondary “semantic” analysis
phase to check things like type-correctness.

Sometimes invalid programs cannot be detected until run-time

Parse trees vs. Abstract syntax Trees
Parse trees reflect details of concrete syntax of

program

Typically designed for easy parsing

To process a program, we usually want a simpler,
more abstract representation, the abstract syntax
tree (AST)

No firm rules about AST design: matter of
engineering taste

S

while (E) do S

T ID n = E

ID n E - T

T

ID n

(E)

E + T

T

ID b

NUM 1

Parse Tree

while (n) do n = n-(b+1)

While

Id n Assgn n

Sub

Id n Add

Id b Num 1

Possible Abstract Syntax Tree

Sub-trees

Attributes

while (n) do n = n-(b+1)

Labels

Tree Grammars
ASTs obey a tree grammar, with rules of the form

label: kind →(attr1 … attrm) kind1 … kindn

where the LHS classifies the possible node labels
into kinds, and the RHS gives the label’s atomic
attributes (if any) and the kinds of its subtrees (if any).

Example:

Abstract syntax captures the essence
 Concrete syntax can have a big impact on the style

and usability of a language…

…and people love to argue about it…

…but it is fundamentally superficial.

The same abstract syntax can be used to represent
many different concrete syntaxes…

developers.google.com/blockly/

Using a graphical notation:

Concrete alternatives

ASTs in Scala
ASTs have recursive structure and nodes have

irregular size and shape, so we store them as
dynamically-allocated heap records, one per tree node.

In Scala, heap records are objects. We define classes
corresponding to the various kinds, and a case class
for each label, e.g.

The case class declarations also define constructors,
so we can write, e.g.

AST Heap Structure
Using these constructors, we generate a heap

structure that is isomorphic to the AST

External Representation of ASTs
Useful to give ASTs an external (concrete!) format so

they can be read or written by programs or humans.

External format must accurately record the internal tree
structure, not just the sequence of leaves (“fringe”) of the
tree.

Can’t use the tree grammar to parse, since it is typically
very ambiguous!

We’ll represent trees using parenthesized prefix notation

also called s-expressions (from the LISP language)

s-expression example
Each AST node is represented by an expression

where label is the node label, the attri are the label’s
attributes (if any) and the childi are the label’s sub-trees
(if any), each of which is itself a node expression

(label attr1 … attrm child1 … childn)

For readability, we can use abbreviations for common labels, such as +
for Add. We can also omit labels on leaves, e.g. use 3 for Num 3, or b
for Id b, if no confusion would arise.

line breaks and indentation
have been added to improve
readability

(While (Id n)
 (Assgn n (Sub (Id n)
 (Add (Id b)
 (Num 1)))))

(While n
 (Assgn n (- n
 (+ b 1))))

Parsing s-expressions
Parsing s-expressions into AST nodes is easy!

Everything is either an atom (keyword, symbol, numeric
literal, etc.) or a parenthesized list of atoms

Can divide parsing into two parts:

 Language-independent parse into generic s-expression
type (atoms and lists)

 Language-dependent analysis of generic s-expression to
recover AST

First item in each list is a symbol that tells the node type
and implies the kind and number of remaining list items

