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Describing Languages

Form: what does  
program look like?

Meaning: what does  
program do?

Easy! Harder!Semantics

www.computerhope.com

imgs.xkcd.com/comics/flowchart.png

Syntax

www.zipcodewilmington.com

http://computerhope.com
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Describing Syntax

Concrete
Describes legal 
form and structure 
of programs 
Describes what 
programs look like 
on page or screen 
Usually defined by 
a context-free 
grammar (CFG)

Abstract
Describes essential 
contents of 
programs as  they 
might look internally 
(in a compiler or 
interpreter) 
Can be defined by 
a tree grammar



PL syntax before symbolic grammars

P.J. Landin, The Next 700 Programming Languages, CACM 9(3), Mar. 1966



PL syntax with CFGs

Clear, compact, precise 

Single definition supports recognition, generation, analysis, … 

Captures recursive structure, which is very common in PLs 

Rich theory with connections to automatic parser generation, 
push-down automata, etc. 



Context-free Grammars (CFGs)
Formally defined by  

a set of terminal symbols  e.g.  {(,)} 

a set of nonterminal variables, which represent 
sets of strings of terminals 

            e.g. {S,T} 
   one of which is the start symbol (e.g. S) 

a set of production rules that map nonterminals 
to strings of terminals and nonterminals 

         e.g. { S → (S),  S → S S, S → ε } 
empty string



Derivations
The language L(G) defined by a grammar G is the set of 
sentences (strings of terminals) that can be derived by 
applying production rules, beginning from the start symbol.  

A derivation can be represented as a parse tree. 

The grammar specifies the shapes of possible parse trees. 

Existence of a parse tree for a sentence shows that 
sentence is in L(G). 

A parse tree imposes hierarchical structure on the parsed 
sentence.



Example parse tree
Root is start 

symbol

Leaves are 
terminals (or ε) 

Derived sentence is given by  
reading leaves left to right

Children of a node 
are given by  

right-hand side  
of a ruleInternal nodes 

are nonterminals  

S → (S) 
S → S S 
S → εUse of S → (S)

Use of S →ε

Tree shows (()()) ∈ L(G)

G

S

( )S

S S

( ( ))S S

ε ε



Linear Derivation Sequences

We can capture the content of a parse tree as a linear 
sequence of individual derivation steps, where each step 
expands a single nonterminal by applying some grammar 
rule.  

When there is more than one nonterminal, we can choose 
any one of them to expand next.  This means there can be 
multiple different linear sequences for the same tree.  

E.g. here are two of the possible sequences for the given 
parse tree:  

S ⇒(S) ⇒ (SS) ⇒ ((S)S) ⇒ (()S) ⇒ (()(S)) ⇒ (()()) 

S ⇒(S) ⇒ (SS) ⇒ (S(S)) ⇒ (S()) ⇒ ((S)()) ⇒ (()())

All sequences for a given tree illustrate the same parse 
structure.

S

( )S

S S

( ( ))S S

ε ε



Some grammars 
let us build 
multiple different 
parse trees for 
the same 
sentence. 

Such grammars 
are said to be 
ambiguous.

Ambiguous Grammars S → (S) 
S → S S 
S → ε

S

S

ε

S

( )S

S S

( ( ))S S

ε ε
Both trees show (()()) ∈ L(G), 
but they impose different structure.

G

S

( )S

S S

( ( ))S S

ε ε



Alternative Grammars
How might we describe the entire language L(G) 
informally? 

Another grammar for the same language is

S → (S) 
S → S S 
S → ε

S → (S)S 
S → ε

S

( )S

( )S

ε

S

εS

( )S S

ε ε

Tree showing that  
 (()()) ∈ L(G’)

G

G’

It is possible to prove that 
L(G) = L(G’) 

But the two grammars 
impose very different 
structures on sentences.



Recap of Key CFG Points
 In an ambiguous grammar, the same sentence can have multiple parse 

trees 

 and hence multiple alternative structures 

This is generally a bad thing for programming language grammars 

The same parse tree can correspond to multiple linear derivations  

Depends on the nonterminal we choose to expand first 

Not important: all these derivations generate the same structure 

The same language can have multiple grammars 

Each grammar may impose a different structure on a given sentence 

For programming language grammars, choice of structure is important



Defining CFGs for real PLs
Use a richer set of terminal symbols called tokens 

Strings of ASCII or Unicode characters 

May be generic, i.e. representing sets of strings 

 Generic token carries an attribute value 

 e.g., ID tokens carry the actual identifier string, 
NUM tokens carry the value of a numeric literal 

 CFG is usually notated using some variant of BNF



 BNF (Backus-Naur Form)
Invented ca. 1960 for Algol-60 language

empty string

nonterminals

terminals

instead of → 



 EBNF (Extended BNF)

Many different variants of EBNF exist

nonterminals
More compact

terminal

terminal

optional

alternative

0 or more

grouping



Syntax Analysis (Parsing)
A parser recognizes syntactically legal programs (as defined by a 

grammar) and rejects illegal ones.  

A successful parse captures the hierarchical structure of the 
program (expressions, blocks, etc.) 

Tree produced by parsing is basis for further processing (e.g. 
type checking, interpretation, code generation,…) 

Failed parse provides error feedback to the user showing 
where and why the program was illegal 

For most modern PLs, an efficient parser can be generated 
automatically from CFG 

Only true for a restricted class of grammars



E

E E+

E E*id a

id b id c

E

E E

+E E

*

id a id b

id c

Expression Grammars
Expressions are at the heart of most high-level 

languages, and illustrate important CFG issues 

A naive grammar for arithmetic expressions
generic token 
representing  

identifiers

Ambiguous!  Here are two parse trees for a+b*c:

we might think 
left tree is “correct”  
one, but nothing in 
grammar says so

“do + first”“do * first”

E ::= E + E | E - E | E * E | E / E | (E) | idx 



Arithmetic Ambiguity

To disambiguate grammars like this, we must choose desired order 
of operations for any expression of the form Ea op1 Eb op2 Ec  

Precedence: which operation (op1 or op2 ) is done first? 

Associativity: if  op1 and op2 have the same precedence, does Eb 
“associate” with the operator to its left or to its right? 

 I.e., is the expression equivalent to (Ea op1 Eb) op2 Ec                            
or to Ea op1 (Eb op2 Ec) ? 

The “usual” rules (based on common usage in written math) give * 
and / higher precedence than + and - and make all these operators 
left-associative. But this is a matter of choice in language design.

E ::= E + E | E - E | E * E | E / E | (E) | idx 



E

E T

E T T F

*

-

+

*

T F

F

id a

id b

id c id d

id eF FT

Rewriting Arithmetic Grammars
One way to enforce desired precedence/associativity 

is to build them into the grammar using extra 
nonterminals, e.g.

E ::= E + T | E - T | T 
T ::=  T * F | T / F | F 
F ::= (E) | idx

Example parse for a*b-c+d*e:

Why does this work?



Limitations of CFGs
CFGs do a great job at describing the syntactic structure of 

programming languages and identifying syntactically legal programs 

But there are many useful characteristics of legal programs that 
cannot be captured in a grammar (no matter how clever we are) 

e.g. in many languages, variables must be declared before they 
are used, but this property cannot be captured in a CFG 

So checking program legality typically requires more than syntax 
analysis 

Most compilers/interpreters use a secondary “semantic” analysis 
phase to check things like type-correctness. 

Sometimes invalid programs cannot be detected until run-time



Parse trees vs. Abstract syntax Trees
Parse trees reflect details of concrete syntax of 

program 

Typically designed for easy parsing 

To process a program, we usually want a simpler, 
more abstract representation, the abstract syntax 
tree (AST) 

No firm rules about AST design: matter of 
engineering taste



S

while ( E ) do S

T ID n = E

ID n E - T

T

ID n

( E )

E + T

T

ID b

NUM 1

Parse Tree

while (n) do n = n-(b+1)



While

Id n Assgn n

Sub

Id n Add

Id b Num 1

Possible Abstract Syntax Tree

Sub-trees

Attributes

while (n) do n = n-(b+1)

Labels



Tree Grammars
ASTs obey a tree grammar, with rules of the form 

label: kind →( attr1 … attrm ) kind1 … kindn 

where the LHS classifies the possible node labels  
into kinds, and the RHS gives the label’s atomic  
attributes (if any) and the kinds of its subtrees (if any). 

Example:



Abstract syntax captures the essence
 Concrete syntax can have a big impact on the style 

and usability of a language… 

…and people love to argue about it… 

…but it is fundamentally superficial. 

The same abstract syntax can be used to represent 
many different concrete syntaxes…



developers.google.com/blockly/

Using a graphical notation:

Concrete alternatives



ASTs in Scala
ASTs have recursive structure and nodes have 

irregular size and shape, so we store them as 
dynamically-allocated heap records, one per tree node. 

In Scala, heap records are objects. We define classes 
corresponding to the various kinds, and a case class 
for each label, e.g. 

The case class declarations also define constructors, 
so we can write, e.g. 



AST Heap Structure
Using these constructors, we generate a heap 

structure that is isomorphic to the AST



External Representation of ASTs
Useful to give ASTs an external (concrete!) format so 

they can be read or written by programs or humans. 

External format must accurately record the internal tree 
structure, not just the sequence of leaves (“fringe”) of the 
tree.  

Can’t use the tree grammar to parse, since it is typically 
very ambiguous! 

We’ll represent trees using parenthesized prefix notation 

also called s-expressions (from the LISP language)



s-expression example
Each AST node is represented by an expression

where label is the node label, the attri  are the label’s 
attributes (if any) and the childi are the label’s sub-trees 
(if any), each of which is itself a node expression

(label attr1 … attrm child1 … childn )

For readability, we can use abbreviations for common labels, such as + 
for Add.  We can also omit labels on leaves, e.g. use 3 for Num 3, or b 
for Id b, if no confusion would arise.

line breaks and indentation  
have been added to improve 
readability 

(While (Id n)
       (Assgn n (Sub (Id n)
                     (Add (Id b)
                          (Num 1)))))

(While n
       (Assgn n (- n
                   (+ b 1))))



Parsing s-expressions
Parsing s-expressions into AST nodes is easy! 

Everything is either an atom (keyword, symbol, numeric 
literal, etc.) or a parenthesized list of atoms 

Can divide parsing into two parts: 

 Language-independent parse into generic s-expression 
type (atoms and lists) 

 Language-dependent analysis of generic s-expression to 
recover AST 

First item in each list is a symbol that tells the node type 
and implies the kind and number of remaining list items


