
CS558
Programming Languages

Fall 2023
Lecture 1a

Andrew Tolmach
Portland State University

© 1994-2023

1

What programming
languages do you know?

2

What programming
languages do you know?

Some historically interesting and/or currently visible languages:
FORTRAN, COBOL, (Visual) BASIC, ALGOL-60, ALGOL-68,
PL/I, C, C++, RPG, Pascal, Modula, Lisp, Scheme, ML,
Haskell, F#, Ada, Prolog, Curry, Snobol, ICON, Java, C#,
JavaScript, Go, Dart, Swift, Rust, perl, tcl, Python,
MATLAB, R, . . .

Don’t forget things like:
- HTML, PHP, other web page description languages
- SQL, other database query languages
- EXCEL formula language

3

What languages?

Source: spectrum.ieee.org/top-programming-languages-20224

http://spectrum.ieee.org/top-programming-languages-2022

What languages?

5

What languages?

6

Source:https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/

1986 1990 1990 1991 1991 1993 1994 1995 1996 1996 1997 1997 2000 2001 2001 2003 2003 2004

History of Programming Languages

©2004 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. All other trademarks are property of their respective owners. part#30417

19601954 1965 1970 1975 1980 1985 1990 1995 2000 20022001 2003 2004

For more than half of the fifty years computer programmers have been
writing code, O’Reilly has provided developers with comprehensive,
in-depth technical information. We’ve kept pace with rapidly changing
technologies as new languages have emerged, developed, and
matured. Whether you want to learn something new or need
answers to tough technical questions, you’ll find what you need
in O’Reilly books and on the O’Reilly Network.

This timeline includes fifty of the more than 2500 documented
programming languages. It is based on an original diagram created
by Éric Lévénez (www.levenez.com), augmented with suggestions
from O’Reilly authors, friends, and conference attendees.

For information and discussion on this poster,
go to www.oreilly.com/go/languageposter.

www.oreilly.com

What languages?

7

“Why are coders angry?”
“Programmers...know their position is vulnerable. They get
defensive when they hear someone suggest that Python is
better than Ruby, because [insert 500-comment message
thread here]. Is the next great wave swelling somewhere,
and will it wash away Java when it comes? Will Go conquer
Python? Do I need to learn JavaScript to remain profitable?
Programmers are often angry because they’re often scared.
We are, most of us, stumbling around with only a few
candles to guide the way. We can’t always see the whole
system, so we need to puzzle it out, bit by bit, in the dark.”

8

- Paul Ford, “What is Code?”, Bloomberg Businessweek, 6/11/15

http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/

Learning Objectives
 Know fundamental building blocks and structure of
programming languages, and be able to analyze a language into
its features.

 Be able to read and manipulate common formalisms for
language syntax and semantics.

 Recognize and program in different language styles, including
the object-oriented and functional paradigms.

 Understand the role of types in languages and be able to explain
how type checking works in general and on specific programs.

Understand procedural and data abstraction and analyze how
they are supported in specific languages.

9

Course Method
Conventional survey textbook, with broad coverage of
languages

Organized around key anatomical features of PLs
Expressions, control flow, functional abstraction, state, types,
objects, modules, …

Lab exercises mostly involving implementing interpreters
for “toy” languages

Exercises will use Scala, a modern language that blends
the object-oriented (OO) and functional (FP) paradigms

10

Course Non-Goals
X Teaching you how to program

X Teaching you how to program in Scala
X although you will learn something about this!

X Surveying the details of lots of languages

X Covering all important programming paradigms
X e.g. we’ll skip logic programming and concurrency

X Learning how real compilers & interpreters are
implemented

X

11

“High-level” Programming
Languages

Consider a simple algorithm for testing primality.

In Scala, using imperative programming style:

 // return true if n has no divisor in the interval [2,n)
 def isPrime(n:Int) : Boolean = {
 for (d <- 2 until n)
 if (n % d == 0)
 return false;
 true
 }

12

“High-level” Programming
Languages

In Scala, using a local recursive function:

 // return true if n has no divisor in the interval [2,n)
 def isPrime(n:Int) : Boolean = {
 // return true if n has no divisor in the interval [d,n)
 def noDivFrom(d:Int) : Boolean =
 (d >= n) || (n % d != 0) && noDivFrom (d+1)
 noDivFrom(2)
 }

13

In Intel X86 assembler

 .globl isprime
 isprime:
 pushl %ebp ; set up procedure entry
 movl %esp,%ebp
 pushl %esi
 pushl %ebx
 movl 8(%ebp),%ebx ; fetch arg n from stack
 movl $2,%esi ; set divisor d := 2
 cmpl %ebx,%esi ; compare n,d
 jge true ; jump if d >= n
 loop: movl %ebx,%eax ; set n into
 cltd ; ... dividend register
 idivl %esi ; divide by d
 testl %edx,%edx ; remainder 0?
 jne next ; jump if remainder non-0
 xorl %eax,%eax ; set ret value := false(0)
 jmp done
 next: incl %esi ; increment d
 cmpl %ebx,%esi ; compare n,d
 jl loop ; jump if d < n
 true: movl $1,%eax ; set ret value := true(1)
 done: leal -8(%ebp),%esp ; clean up and exit
 popl %ebx
 popl %esi
 leave
 ret

14

What makes a language “high-level”?

15

What makes a language “high-level”?
Complex expressions (arithmetic, logical,...)

Structured control (loops, conditionals, cases,...)

Composite types (arrays, records, ...)

Type declarations and type checking

Multiple data storage classes (global/local/heap/
GC?)

Procedures/functions, with private scope (first
class?)

Non-local control (exceptions, threads,...)

Data abstraction (ADTs, modules, objects...)16

What does hardware give us?

17

What does hardware give us?
Low-level machine instructions

Control flow based on labels and conditional
branches

Explicit locations (e.g. registers) for values and
intermediate results of computations

Flat memory model

Explicit memory management (e.g., stacks for
procedure local data)

18

Two classic approaches:

A compiler translates high-level language
programs into a lower-level language (e.g.
machine code)

19

Compiler

High-level
source program

Low-level
target program

How do we bridge the gap?

Input Output

Two classic approaches:

An interpreter is a fixed program that reads in
(the representation of) an arbitrary high-level
program and executes it

20

Interpreter

High-level
source program

How do we bridge the gap?

Input Output

How do we bridge the gap?
Two classic approaches:

A compiler translates high-level language
programs into a lower-level language (e.g.
machine code)

An interpreter is a fixed program that reads in
(the representation of) an arbitrary high-level
program and executes it

Compilers can generate code that runs much
faster than interpreted code

Interpreters are quicker and easier to write,
maintain and understand21

22

High-level
source program

Combined approaches

Compiler1

Intermediate
language program

InterpreterIn Out

In

Compiler2

Low-level
target program Out

Stack machines: an intermediate
language

A stack machine is a simple architecture based
on a stack of operand values

Each machine instruction pops its operands
from the stack and pushes its result back on

So instructions are very simple, because there’s no need to
specify operand locations

Often used in abstract machines, such as the
Java Virtual Machine (which Scala also uses)

Often compile from high-level language to stack
machine byte code which is then interpreted (or
perhaps further compiled to machine code)

23

Stack machine instructions

Instruction set for a very simple stack machine

Instruction Stack before Stack after Side effects

CONST i s1 ... sn i s1 ... sn -

LOAD x s1 ... sn Vars[x] s1 ... sn -

STORE x s1 ... sn s2 ... sn Vars[x] := s1

PLUS s1 s2 s3 ... sn (s2+s1) s3 ... sn -

MINUS s1 s2 s3 ... sn (s2-s1) s3 ... sn -

Here Vars[] is an auxiliary array mapping variables to values.
24

Stack machine example

Code

CONST 3
LOAD a
MINUS
LOAD b
CONST 7
MINUS
PLUS
STORE c

25

Stack Vars[]
 a=100, b=200

3 a=100, b=200
100 3 a=100, b=200

-97 a=100, b=200
200 -97 a=100, b=200

7 200 -97 a=100, b=200
193 -97 a=100, b=200

96 a=100, b=200
a=100, b=200,c=96

Here’s a stack machine program corresponding
to the simple statement c=3-a+(b-7)

Stack machine example
Here’s a stack machine program corresponding
to the simple statement c=3-a+(b-7)

CONST 3
LOAD a
MINUS
LOAD b
CONST 7
MINUS
PLUS
STORE c

Is this code sequence unique?

Observe that high-level
expressions are more flexible

than machine code

26

Other themes in the study of
programming languages

Paradigms
‣Imperative
‣Object-oriented
‣Functional
‣Logic
‣Concurrent/Parallel
‣Scripting

27

Scale
‣“Programming in the Small”

- what’s important for 102 lines?
‣“Programming in the Large”

- what’s important for106 lines?

Language Design Criteria
‣Expressiveness
‣Efficiency
‣Correctness

Course Structure
 Twice-per-week course lectures, live and on Zoom

Post-class self-study questions (not to hand in)

Regular reading assignments

Short on-line quiz each day reading is due

Weekly lab assignments

 (Mostly) working with interpreters for “toy” languages that
illustrate important language features

Implementation in Scala

You are encouraged to work collaboratively on these
assignments (but everyone must submit separately)

In-class midterm and final

Overall homework load should be ≦10 hours/week

28

Books

29

First edition is available free on line,
and is good enough for us.

Grading
 5% Reading Quizzes

45% Weekly Labs

20% Midterm (Oct. 26)

30% Final exam (Dec. 5)

Two one-on-one Zoom meetings with instructor
are required to pass course

30

WebLab

31

Web-based system for assignments

Lab assignments (and reading quizzes) are issued

You develop solutions in the embedded editor

(or in your preferred stand-alone environment)

You test your solutions against your own tests and
against (secret) tests we provide

We can help you debug problems via “discussions”

You submit your solutions

Your scores are automatically recorded

We (usually) publish correct solutions

One-on-one Zoom meetings
Two required meetings with instructor
• Introductory meeting in first two weeks
• Second meeting after midterm exam

About 10 minutes each (15 minute slots)

Sign-up schedule on course web page

If these are problematic due to scheduling,
technological, or other issues, let instructor know

32

What to do now:

33

1. Do post-class self-study questions
• They can be found on course web page

2. Register to use WebLab
• See instructions in syllabus

3. Do the assigned reading (Scott 1, 2.1, 6.1) and complete the
quiz before Thursday at 4pm

• Quiz can be found inside WebLab

4. Start working on the first week’s homework assignment,
which is due next Tuesday at 4pm

• The assignment can be found inside WebLab

5. Sign up for first one-on-one Zoom meeting with instructor
• Sign-up schedule is on course web page

