
CS558
Programming Languages

Fall 2023
Lecture 10a

Andrew Tolmach
Portland State University

© 1994-2023

Object-oriented Programming
Programs are structured in terms of objects:

collections of variables (“fields”) and functions
(“methods”)

 Implicitly associates variable data with functions

Invented to model discrete entities or processes, e.g.

Simulations (object = real-world object)

Graphical user interfaces (object = desktop item)

But can be used for any programming task

2

OOP Characteristics
OOP languages usually support

Dynamic dispatch

Encapsulation

Inheritance

Subtyping

…but there is no precise definition of OOP

3

Some important OOP languages

4

Language Static
types?

Class-
based?

All values
are objects?

Simula67 ✔ ✔

Smalltalk ✔ ✔

C++ ✔ ✔

Java/C# ✔ ✔

JavaScript

Python ✔

Ruby ✔ ✔

Procedures vs. Methods
Fundamental OOP control structure is method invocation

Similar to function call in a procedural language

But each method takes the object itself as an implicit
argument, and this receiver object also helps resolve
method name:

Change in metaphor: instead of applying functions to
values, we “send messages to object.”

5

PROCEDURAL VS. OO PROGRAMMING

The fundamental control structure in OOP is method invocation, similar

to function call in ordinary procedural programming, but:

• In most OO languages, there is a superficial syntactic difference: each

function defined for an object takes the object itself as an implicit argu-

ment.

s.add(x) ; OO style
Set.add(s,x) ; procedural style

• Corresponding change in metaphor: instead of applying functions to

values, we talk of “sending messages to objects.”

PSU CS558 F’16 LECTURE 10A c© 1994–2016 ANDREW TOLMACH 3

Dynamic Dispatch
In most OOP languages, the receiving object itself controls

how each message is processed.

This is a form of dynamic overloading (i.e., a certain kind of
polymorphism)

The implementation of the add method is completely
different in s1 and s2; the choice of which one runs is
determined at run time.

6

DYNAMIC METHOD DISPATCH

A more important difference is that in OOP, the receiving object itself

controls how each message is processed. E.g., the effect of s.add can

change depending on exactly which object is bound to s. This is a form of

dynamic overloading (a certain kind of polymorphism).

Example:

s1 = new ordered-list-set
s2 = new balanced-tree-set
if ... then s = s1 else s = s2
s.add(42)

The implementation of the add method is completely different in s1 and

s2; choice of which runs is determined at runtime.

PSU CS558 F’16 LECTURE 10A c© 1994–2016 ANDREW TOLMACH 4

Classes
In OOP, we typically want to create multiple objects having

the same structure (field names) and method definitions

In most OO languages this is done by defining a class,
which is a kind of template from which new objects can be
created

Different instances of the class will typically have different
field values, but all will share the same method
implementations

Classes are not essential; one alternative (used by
JavaScript, e.g.) is to create new objects by cloning
existing prototype objects

7

Encapsulation
Objects are often (though not always) designed so that

their data fields can only be accessed by the object’s
own methods

This kind of encapsulation is just what is needed to
implement an Abstract Data Type (ADT)

It allows the representation or implementation of an
object to change without affecting client code that
interacts with the object only via method send.

However, OO programmers often violate encapsulation.
For example, object fields may be public, allowing them
to be accessed from code outside the object’s methods

8

Subtyping in general
Recall that types can often be naturally refined into subtypes

 type = set of values supporting certain operations

 subtype = subset of values supporting those operations
and more

Example: Type “Animal” supports operation “eat.” Subtype
“Bird” supports operation “eat” and also operation “fly.”

 For type soundness, say B is a subtype of A if we can use a
B value wherever an A value is expected.

Informally, makes sense to say B is a subtype of A if every
value of B “is a” value of A.

9

Subclasses
In class-based OO languages, it is common to declare

immediate subtypes by defining subclasses.

e.g. in Scala: class Bird extends Animal

The overall subtyping relation is automatically taken to
be the reflexive, transitive closure of the immediate
subclass declarations

e.g. if we also define class Crow extends Bird
then automatically Crow is a subtype of Animal

This leads to a subtyping hierarchy

10

Animal

Bird Bee

Crow

Name-based
subtyping

Heterogenous Collections
Subtyping and dynamic dispatch combine to give

powerful support for manipulating heterogeneous
collections:

11

abstract class Animal {
 def name() : String
 def eat() : String
}

class Bird extends Animal {
 def name() = "bird"
 def eat() = "chomp on insects"
}

class Bee extends Animal {
 def name() = "bee"
 def eat() = "suck nectar"

object Main {
 val animals : List[Animal] = List(new Bird(), new Bee())
 for (animal <- animals)
 println(animal.name() + ":" + animal.eat())
}

bird:chomp on insects
bee:suck nectar

Output:

Inheritance
Classes may also be related because their

implementations are similar.

To avoid writing duplicate code, we might like to
inherit most of the implementation of one class from
another

possibly overriding some aspects of the
implementation in the subclass

This works nicely when the inheriting class is also a
subtype of the providing class

12

Using Inheritance

13

abstract class Animal {
 def name() : String
 def eat() : String
}

class Bird extends Animal {
 def name() = "bird"
 def eat() = "chomp on insects"
}

object Main {
 val animals : List[Animal] = List(new Bird(), new Crow(), new Bee())
 for (animal <- animals)
 println(animal.name() + ":" + animal.eat())
}

class Crow extends Bird {
 override def name() = "crow"
}

class Bee extends Animal {
 def name() = "bee"
 def eat() = "suck nectar"
}

definition of eat() is
inherited from Bird

definition of name()
from Bird is overridden

bird:chomp on insects
crow:chomp on insects
bee:suck nectar

Output:

Flexibility of Dynamic Dispatch
Method calls are always dispatched to the original

receiving object, so superclass code can access
functionality in subclasses.

14

abstract class Animal {
 def name() : String
 def eat() : String
}

class Bird extends Animal {
 def name() = "bird"
 def eat() = "chomp on " + food()
 def food() = "insects"
}

class Crow extends Bird {
 override def name() = "crow"
 override def food() = "anything"
}

class Robin extends Bird {
 override def name() = "robin"
 override def food() = "worms"
}

object Main {
 val animals : List[Animal] = List(new Bird(), new Crow(), new Robin())
 for (animal <- animals)
 println(animal.name() + ":" + animal.eat())
} bird:chomp on insects

crow:chomp on anything
robin:chomp on worms

Output:

Subtyping vs. Inheritance
Sometimes we’d like to use inheritance even when subtyping

is not appropriate, e.g.:

 Suppose we add bat as a new kind of animal. Since
bats also eat insects, we might be tempted to make bat a
subclass of bird so that it would inherit the
implementation of eat().

But it is not the case that a bat “is a” bird! That is, it does
not suffice to provide a bat when a bird is expected. (E.g. if
bird had a method lay_eggs(), we would not be able to
give an appropriate implementation of that method for bat.)

 Inheritance concerns can warp design of subtyping hierarchy

15

Beyond Single Inheritance
More flexible inheritance mechanisms can help.

Some languages (e.g. C++) let a class inherit
from multiple super-classes. (Semantics of field
inheritance can be messy.)

Java supports subtyping through multiple
interfaces, which are like classes without fields.

Scala supports both inheritance and subtyping
through traits, which are like partial class
definitions that can be “mixed in” together.

16

Using Traits for Subtyping

17

abstract class Named {
 def name() : String
}

trait Flies extends Named {
 def fly() : String
}

trait Eats extends Named {
 def eat() : String
}

object Main {
 val fliers : List[Flies] = List(new Bird(), new Airplane())
 val eaters: List[Eats] = List(new Bird(), new Lion())
 for (flier <- fliers) println(flier.name() + ":" + flier.fly())
 for (eater <- eaters) println(eater.name() + ":" + eater.eat())
}

class Airplane extends Flies {
 def name() = "plane"
 def fly() = "using jets"
}

class Lion extends Eats {
 def name() = "lion"
 def eat() = "chomps on red meat"
}

class Bird extends Flies with Eats {
 def name() = "bird"
 def fly() = "by flapping wings"
 def eat() = "chomps on insects"
}

bird:by flapping wings
plane:using jets
bird:chomps on insects
lion:chomps on red meat

Output:

Using Traits for Inheritance

18

abstract class Animal {
 def name() : String
 def eat() : String
 def reproduce() : String
}

trait Insectivorous {
 def eat() = "chomp on insects"
}

trait Oviparous {
 def reproduce() = "lay eggs"
}

class Bird extends Animal with Insectivorous with Oviparous {
 def name() = "bird"
}

object Main {
 val animals : List[Animal] = List(new Bird(), new Bat(), new Bee())
 for (animal <- animals)
 println(animal.name() + ":" + animal.eat() + ":" + animal.reproduce())
}

class Bat extends Animal
 with Insectivorous {
 def name() = "bat"
 def reproduce() = "bear live young"
}

class Bee extends Animal
 with Oviparous {
 def name() = "bee"
 def eat() = "suck nectar"
}

bird:chomp on insects:lay eggs
bat:chomp on insects:bear live young
bee:suck nectar:lay eggs

Output:

Representation of Objects
An object is essentially a record (usually heap-allocated to

support unlimited lifetime) containing values for the fields and
code pointers for methods

In a dynamically-typed language, the object record fields/
methods have labels that can be searched at run time (at
least in a naive implementation)

In a statically-typed language, we can (usually) compute the
offset of each field/method statically, avoiding run-time
search

In a class-based language, we usually factor the
representation so that method pointers are stored in a
separate class record

19

Example without inheritance

20

class A {
 int x;
 int y;
 f() = x+y;
 g(z) = f()+z;
}
val a1:A = …
val a2:A = …
val w = a1.g(10)

class
x 42
y 13

class
x 88
y 2

name A
f

g

code for f

code for g

a1

a2

f(a) = a->x + a->y
g(a,z) = a->class->f(a) + z
w = a1->class->g(a1,10)

Generated code in C-like notation

vtable

Implementing Sub-classes
A key observation is that sub-classes only add (or override)

fields and methods to the super-class.

So the list of contents for super-class representation is
always a prefix of list for sub-class representation

All classes in the hierarchy can share the same offsets for
the fields and methods they have in common, making run-
time search unnecessary

(This is just an implementation trick, but the resulting
efficiency was historically important for the adoption of OOP.)

Only works for single inheritance; multiple inheritance,
interfaces, or traits require more work.

21

Example with inheritance

22

class A {
 int x;
 int y;
 f() = x+y;
}
class B extends A {
 int z;
 g() = x+z;  
}
val a:A = …
val b:B = …
val w = b.f()+b.g()

class
x 42
y 13

class
x 88
y 2
z 33

name A

f code for f

code for g

a

b

f(a) = a->x + a->y
g(b) = b->x + b->z
w = b->class->f(b) +
 b->class->g(b)

name B
f

g

vtables

