
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 7b

1. (a)

Here is the AST, with one node on each numbered line (arbitrarily numbered breadth-first).

1: let f
/ \

/ \
2: fun x \
3: | fun y
4: x |
5: fun z

|
6: if

/ | \
7: y | \
8: z \
9: @

/ \
10: f \
11: 3

From this tree, we generate the following constraints:

Node # Rule Constraint
1 let t2 = tf and t1 = t3
2 fun t2 = tx -> t4
3 fun t3 = ty -> t5
4 var t4 = tx
5 fun t5 = tz -> t6
6 if t7 = Bool and t6 = t8 = t9
7 var t7 = ty
8 var t8 = tz
9 app t10 = t11 -> t9
10 var t10 = tf
11 int t11 = Int

We can solve this by inspection:

First, using the identities for t2, t4, t7,t8, t10, t11 we can substitute for these variables, leading to the following
modified constraints:

2’ tf = tx -> tx
6’ ty = Bool and t6 = tz = t9
9’ tf = Int -> t9

Using t1 = t3, we can substitute for t3 to get the modified contraint

3’ t1 = ty -> t5



(Choosing whether to get rid of t1 or t3 is fairly arbitrary, but we ultimately want to know the root expression type
t1, so we keep that.)

Similarly, from t6 = tz = t9, we can substitute for t6 and t9 (again fairly arbitrary, but we ultimately want to
know tz), getting

5’ t5 = tz -> tz
9’’ tf = Int -> tz

Equating the two expressions (2’ and 9”) for tf, we get that

tx -> tx = Int -> tz

which implies that tx = tz = Int.

Summarizing, we have

t1 = Bool -> (Int -> Int)
tf = Int -> Int
tx = Int
ty = Bool
tz = Int

(b)

The AST:

1: fun f
|

2: fun g
|

3: fun x
|

4: @
/ \

5: f \
6: @

/ \
7: g \
8: x

The generated constraints:

Node # Rule Constraint
-----------------------------
1 fun t1 = tf -> t2
2 fun t2 = tg -> t3
3 fun t3 = tx -> t4
4 app t5 = t6 -> t4



5 var t5 = tf
6 app t7 = t8 -> t6
7 var t7 = tg
8 var t8 = tx

Solution by inspection:

Using the identities from nodes 5, 6, and 7, we can rewrite the contraints for nodes 4 and 6 as

4’ tf = t6 -> t4
6’ tg = tx -> t6

There are no other contraints on tx, t4 and t6, so the overall type must be parametric in (i.e. polymorphic over)
these types. The type of the overall expression is

t1 = tf -> t2 (by 1)
= tf -> (tg -> t3) (by 2)
= tf -> (tg -> (tx -> t4)) (by 3)
= (t6 -> t4) -> ((tx -> t6) -> (tx -> t4)) (by 4’ and 6’)

Or, using more suggesting names for the polymorphic types, and the convention that -> associates to to the right:

t1 = (tb -> tc) -> (ta -> tb) -> (ta -> tc)
tx = ta
tf = tb -> tc
tg = ta -> tb

which makes sense for a general-purpose “compose” function.


