CS558 Programming Languages — Fall 2023 — Suggested Study Question Solutions for Lecture 7b
1. (a)

Here is the AST, with one node on each numbered line (arbitrarily numbered breadth-first).

1: let £
/N
/ \
2 fun x \
3 | fun vy
4 X |
5 fun z
|
6 if
/1A
7 y |\
38 z \
9 @
/ N\
10: £ \
11: 3

From this tree, we generate the following constraints:

Node # Rule Constraint

1 let t2 = tf and tl1 = t3
2 fun t2 = tx -> t4

3 fun t3 =ty -> tb

4 var td = tx

5 fun th = tz —> to6

6 if t7 = Bool and t6 = t8 = t9
7 var t7 = ty

8 var t8 = tz

9 app tl0 = t11 -> t9

10 var tl0 = tf

11 int tll = Int

We can solve this by inspection:

First, using the identities for t 2, t4, £ 7,£8, £ 10, t 11 we can substitute for these variables, leading to the following
modified constraints:

27 tf = tx —> tx
6’ ty Bool and t6 = tz = t9
9’ tf = Int -> t9

Using t1 = t3, we can substitute for t 3 to get the modified contraint

3’ tl = ty —> t5



(Choosing whether to get rid of t 1 or t 3 is fairly arbitrary, but we ultimately want to know the root expression type
t1, so we keep that.)

Similarly, from t6 = tz = t9, we can substitute for t 6 and t 9 (again fairly arbitrary, but we ultimately want to

know t z), getting

5’ th =tz —> tz
9r’ tf Int —> tz

Equating the two expressions (2’ and 9”) for t £, we get that

tx —> tx = Int —> tz

which implies that tx = tz = Int

Summarizing, we have

tl = Bool -> (Int —-> Int)
tf = Int -> Int

tx = Int
ty = Bool
tz = Int
(b)
The AST:
1: fun f
|
2: fun g
|
3: fun x
|
4: @
/ \
5: £ \
6: @
/ \
7 g \
8: X

The generated constraints:

Node # Rule Constraint

1 fun tl = tf —> t2
2 fun t2 = tg —> t3
3 fun t3 = tx -> t4
4 app th = t6 —> t4



5 var tb = tf
6 app t7 = t8 -> t6
7 var t7 = tg
8 var t8 = tx

Solution by inspection:

Using the identities from nodes 5, 6, and 7, we can rewrite the contraints for nodes 4 and 6 as

4r tf = t6 —> t4
6’ tg = tx -> té6

There are no other contraints on tx, t4 and t 6, so the overall type must be parametric in (i.e. polymorphic over)
these types. The type of the overall expression is

tl = tf -> t2 (by 1)
= tf -> (tg —> t3) (by 2)
= tf -> (tg -> (tx -> t4)) (by 3)
= (t6 —> t4) -> ((tx -> t6) —> (tx —-> t4)) (by 4’ and 6’)

Or, using more suggesting names for the polymorphic types, and the convention that —> associates to to the right:

tl (tb => tc) —> (ta -> tb) -> (ta —> tc)
tx = ta

tf = tb —> tc

tg = ta —> tb

which makes sense for a general-purpose “compose” function.



