Here is the AST, with one node on each numbered line (arbitrarily numbered breadth-first).

```
1:   let f
     / \
    /   \
2:   fun x \
3:     fun y |
4:     x |
5:     fun z |
6:     if / | \
7:     y | \
8:     z \%
9: @ / \
10: f \%
11: 3
```

From this tree, we generate the following constraints:

<table>
<thead>
<tr>
<th>Node #</th>
<th>Rule</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>let</td>
<td>t2 = tf and t1 = t3</td>
</tr>
<tr>
<td>2</td>
<td>fun</td>
<td>t2 = tx -> t4</td>
</tr>
<tr>
<td>3</td>
<td>fun</td>
<td>t3 = ty -> t5</td>
</tr>
<tr>
<td>4</td>
<td>var</td>
<td>t4 = tx</td>
</tr>
<tr>
<td>5</td>
<td>fun</td>
<td>t5 = tz -> t6</td>
</tr>
<tr>
<td>6</td>
<td>if</td>
<td>t7 = Bool and t6 = t8 = t9</td>
</tr>
<tr>
<td>7</td>
<td>var</td>
<td>t7 = ty</td>
</tr>
<tr>
<td>8</td>
<td>var</td>
<td>t8 = tz</td>
</tr>
<tr>
<td>9</td>
<td>app</td>
<td>t10 = t11 -> t9</td>
</tr>
<tr>
<td>10</td>
<td>var</td>
<td>t10 = tf</td>
</tr>
<tr>
<td>11</td>
<td>int</td>
<td>t11 = Int</td>
</tr>
</tbody>
</table>

We can solve this by inspection:

First, using the identities for t2, t4, t7, t8, t10, t11 we can substitute for these variables, leading to the following modified constraints:

2'	tf = tx -> tx
6'	ty = Bool and t6 = tz = t9
9'	tf = Int -> t9

Using t1 = t3, we can substitute for t3 to get the modified constraint

| 3' | t1 = ty -> t5 |
Choosing whether to get rid of t_1 or t_3 is fairly arbitrary, but we ultimately want to know the root expression type t_1, so we keep that.

Similarly, from $t_6 = t_9$, we can substitute for t_6 and t_9 (again fairly arbitrary, but we ultimately want to know t_9), getting

$$5' \quad t_5 = t_9 \rightarrow t_9$$
$$9' \quad t_f = \text{Int} \rightarrow t_9$$

Equating the two expressions ($2'$ and $9''$) for t_f, we get that

$$t_x \rightarrow t_x = \text{Int} \rightarrow t_9$$

which implies that $t_x = t_9 = \text{Int}$.

Summarizing, we have

$$t_1 = \text{Bool} \rightarrow (\text{Int} \rightarrow \text{Int})$$
$$t_f = \text{Int} \rightarrow \text{Int}$$
$$t_x = \text{Int}$$
$$t_y = \text{Bool}$$
$$t_z = \text{Int}$$

(b)

The AST:

```
1: fun f
   | 2: fun g
   | 3: fun x
   | 4: @ / \ 5: f / \ 6: @ / \ 7: g / \ 8: x
```

The generated constraints:

<table>
<thead>
<tr>
<th>Node #</th>
<th>Rule</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fun</td>
<td>$t_1 = t_f \rightarrow t_2$</td>
</tr>
<tr>
<td>2</td>
<td>fun</td>
<td>$t_2 = t_g \rightarrow t_3$</td>
</tr>
<tr>
<td>3</td>
<td>fun</td>
<td>$t_3 = t_x \rightarrow t_4$</td>
</tr>
<tr>
<td>4</td>
<td>app</td>
<td>$t_5 = t_6 \rightarrow t_4$</td>
</tr>
</tbody>
</table>
Solution by inspection:

Using the identities from nodes 5, 6, and 7, we can rewrite the constraints for nodes 4 and 6 as

\[
\begin{align*}
4' & \quad tf = t6 \rightarrow t4 \\
6' & \quad tg = tx \rightarrow t6
\end{align*}
\]

There are no other constraints on \(tx\), \(t4\) and \(t6\), so the overall type must be parametric in (i.e. polymorphic over) these types. The type of the overall expression is

\[
\begin{align*}
t1 = tf \rightarrow t2 & \quad \text{(by 1)} \\
= tf \rightarrow (tg \rightarrow t3) & \quad \text{(by 2)} \\
= tf \rightarrow (tg \rightarrow (tx \rightarrow t4)) & \quad \text{(by 3)} \\
= (t6 \rightarrow t4) \rightarrow ((tx \rightarrow t6) \rightarrow (tx \rightarrow t4)) & \quad \text{(by 4' and 6')} \\
\end{align*}
\]

Or, using more suggesting names for the polymorphic types, and the convention that \(\rightarrow\) associates to the right:

\[
\begin{align*}
t1 = (tb \rightarrow tc) \rightarrow (ta \rightarrow tb) \rightarrow (ta \rightarrow tc) \\
tx = ta \\
 tf = tb \rightarrow tc \\
 tg = ta \rightarrow tb
\end{align*}
\]

which makes sense for a general-purpose “compose” function.