
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 7a

1.

(a)

(Int)
∅ ⊢ 1 : Int

(Int)
∅ ⊢ 2 : Int (Add)

∅ ⊢ (+ 1 2) : Int
(Int)

∅ ⊢ 3 : Int (Add)
∅ ⊢ (+ (+ 1 2) 3) : Int

(b) This expression is not typable in the empty environment, because x is free. More formally, any typing tree for this
expression would need to have the shape

∅(x) = Int
(Var)

∅ ⊢ 2 : Int
(Int)

∅ ⊢ 1 : Int (Add)
∅ ⊢ (+ x 1) : Int

but the (Var) inference is invalid, since ∅(x) is not defined.

(c) The (While) rule is based on the assumption that the final value of a while expression is always the integer 0.

(Int)
∅ ⊢ 0 : Int

TE1(x) = Int
(Var)

TE1 ⊢ x : Int
(Int)

TE1 ⊢ 10 : Int (Leq)
TE1 ⊢ (<= x 10) : Bool

TE1(x) = Int

TE1(x) = Int
(Var)

TE1 ⊢ x : Int
(Int)

TE1 ⊢ 1 : Int
(Add)

TE1 ⊢ (+ x 1) : Int
(Assgn)

TE1 ⊢ (:= x (+ x 1)) : Int
(While)

TE1 ⊢ (while (<= x 10) (:= x (+ x 1))) : Int
(Let)

∅ ⊢ (let x 0 (while (<= x 10) (:= x (+ x 1)))) : Int

where TE1 = {x 7→ Int}.

(d)

(Int)
∅ ⊢ 0 : Int

(Int)
∅ ⊢ 1 : Int (Leq)

∅ ⊢ (<= 0 1) : Bool

TE1(x) = Bool
(Var)

TE1 ⊢ x : Bool
(Int)

TE1 ⊢ 0 : Int
(Int)

TE1 ⊢ 1 : Int
TE1 ⊢ (if x 1 2) : Int

(Int)
TE1 ⊢ 3 : Int

(Add)
TE1 ⊢ (+ (if x 1 2) 3) : Int

(Let)
∅ ⊢ (let x (<= 0 1) (+ (if x 1 2) 3)) : Int

where TE1 = {x 7→ Bool}.

(e) There is no valid proof tree for this expression because the two arms of the if don’t have the same type: (<= 1
2) is Bool but 3 is Int. Thus, the (If) rule cannot be applied. Note that the expression is untypable even though it
would evaluate without any problem under the usual dynamic semantics, since the second arm of the if will always
be taken—but the type system doesn’t know about this.

2. Here is a suitable rule:

TE ⊢ e1 : t1 TE ⊢ e2 : t2
TE ⊢ (before e1 e2) : t1

(Before)



Note that is very important to insist (in the second hypothesis) that e2 has some type t2 even though we do not care
what that type is. It might be tempting to write the rule like this:

TE ⊢ e1 : t1
TE ⊢ (before e1 e2) : t1

(Before’)

but this would be a mistake: using this rule, e2 could be completely ill-typed yet we would still say the overall before
expression was well-typed.

3. The key idea is to realize that we can define a struct with a single field. (Since C structs are not boxed, this
doesn’t even have any runtime cost.)

// defining abbreviations isn’t essential, but makes the code more readable
typedef struct ftemp {float t;} FTemp;
typedef struct ctemp {float t;} CTemp;

FTemp x,y;
CTemp z;
x = y;
x.t = 10.0;
x = z; // should be type error
x.t = 1.8 * z.t * 32.0;

4. (a) The second assignment is obviously valid, since left and right sides have the same type (B). Using the subsump-
tion rule, we see that the first and third assignments are valid (we are providing a value of subtype B where a value of
the supertype A is expected). Only the fourth assignment is (statically) invalid: all we know statically is that a has type
A, which is not a subtype of B. In fact, at run time it turns out that a actually contains a B object, but the typechecker
cannot know this in general (even though conceivably it could figure it out for this particularly simple program) so its
rules say to reject the program.

(b) C1 implements I1 and I3. C2 implements I1, I2, I3, and I4. C3 implements only I3 (even though from the
body of the function we can see that it actually returns a B and therefore really would behave like I4.f is supposed
to—again, a typechecker cannot know about the dynamic behavior of functions in general). C4 implements I3 and
I4.


