
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 6b

1. If g is nested within f, then its scope is limited to f (including perhaps other nested functions defined in f). Then
there are only a limited number of ways in which g can be called:

• g can be called directly by its name from within the body of f. In this case, g returns before f returns.

• g can be called directly by its name from within some function h defined locally in f (where h might be g itself,
if g is recursive). But by an inductive argument, we can reason that h also cannot be called after g returns, so
its call to g cannot be after f returns either.

• Since downward funargs are allowed, g can be passed by f (or some h, as above) as an argument p to some
other function r, and r can then call g indirectly under its alias p. But since r must return before f, this call to
g must also occur before f returns.

• Since only downward funargs are allowed, there is no other way for g to escape from f: it cannot be returned or
stored in a global variable that might be accessed after f returns.

2. (a)

case class Map[A,B](f: FCF[A,B]) extends FCF[List[A],List[B]]{
def apply (xs:List[A]) : List [B] = {

def g(xs:List[A]) : List[B] = xs match {
case Nil => Nil
case (y::ys) => f.apply(y)::g(ys)

}
g (xs)

}
}

def pow(n:Int, b:Int) : Int =
if (n == 0) 1 else b * pow (n-1,b)

case class Pow(n:Int) extends FCF[Int,Int] {
def apply (b:Int) = pow(n,b)

}

val v = Map.apply(Pow(3)).apply(List(1,2,3))

(b)

case class Compose[A,B,C] (f: FCF[B,C], g: FCF[A, B]) extends FCF[A,C] {
def apply (x:A) : C = f.apply(g.apply(x))

}

val h = Compose(MkFCF((x:Int) => x> 3),MkFCF((y:Int) => y * 2))



3. (a)

def fac (n:Int) : Int = {
def factcps(n:Int,k:Int => Int) : Int =

if (n < 2)
k(n)

else factcps(n-1, v => k(n*v))
factcps(n, v => v)

}

(b)

def fib (n:Int) : Int = {
def fibcps(n:Int,k:Int => Int) : Int =

if (n < 2)
k(1)

else fibcps(n-1, v1 => fibcps (n-2, v2 => k (v1+v2)))
fibcps(n, v => v)

}


