
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 3b

1. Fragmentation can arise in the heap because deallocations may occur in arbitrary order relative to allo-
cations, leading to the possibility of “holes” that are too small individually to satisfy an allocation request,
even if the sum of their sizes is sufficient. Suppose we have a heap of size 1024 bytes, and we execute the
following code in C (where malloc requests bytes of memory from the heap and free returns it):

char *a = malloc(256); // allocates at heap offset 0
char *b = malloc(512); // allocates at heap offset 256
char *c = malloc(256); // allocates at heap offset 768; heap is full
free(a); // deallocates at offset 0; heap has 256 free bytes
free(c); // deallocates at offset 768; heap has 512 free bytes, but
char *d = malloc(512); // this request fails because those bytes are not contiguous

This problem cannot occur with the stack, because all the free space in a stack is always contiguous. This is
a result of the fact that stack deallocations always occur in reverse order of allocations.

2. Since ST values are not boxed, the semantics of assignment is to make a copy of each field. Thus,
changing the value of the D field in st2 does not affect st1. On the other hand, since CL values are boxed,
the C field is effectively a pointer to the contents of cl, so changes to cl are visible in both st1 and st2.
So we get this:

st1.C.A = 13 st1.C.B = 2 st1.D = 3
st2.C.A = 13 st2.C.B = 2 st2.D = 33

If you want to play with C# code without installing the language on your machine, try https://
dotnetfiddle.net/.

3. Here is a simple example, exercised by running Foo.main(). Since each call to the constructor of P
allocates a fresh object at a new address, a and b are structurally equal, but not reference equal.

case class P(x:Int)
object Foo {

def main() = {
val a = P(1)
val b = P(1)
println("are a and b structurally equal? answer:" + (a==b));
println("are a and b reference equal? answer:" + a.eq(b))

}
}

4. (a) Following the suggestion on slide 23, we can write a 4-tuple using nested pairs, nesting either to the
right:

(1.(2.(3.4)))

or to the left:



(((1.2).3).4)

The right-nested version looks like this as a tree (the left-nested version is similar):

(b) Using right-nested 4-tuples, we get

((1.2).(3.((4.(5.(6.7))).0)))

Notice the difference between the encoding of fixed-length records and arbitrary-length lists.


