
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 3a

1. (a) Binding of identifiers occurs for a at line 01, g and c at line 02, a at line 03, d at line 04 (but not line
05!), h and e at line 06, f and b at line 09, j at line 11, and b at line 12.

(b) Uses of identifiers occur for c at line 03, f and a at line 04, d (twice!) at line 05, e and d at line 07, h
at line 08, a and b at line 10, g and a at line 12, and b and a at line 13.

(c)

01: {}
02: {a : line 01}
03: {a : line 01, c: line 02, g: line 02, f: line 09 }
04: {a : line 03, c: line 02, g: line 02, f: line 09 }
05: {a : line 03, c: line 02, d: line 04, g: line 02, f: line 09 }
06: {a : line 03, c: line 02, d: line 04, g: line 02, f: line 09 }
07: {a : line 03, c: line 02, d: line 04, e: line 06, g: line 02, f: line 09, h: line 06 }
08: {a : line 03, c: line 02, d: line 04, g: line 02, f: line 09, h: line 06 }
09: {a : line 01}
10: {a : line 01 b: line 09, g: line 02, f: line 09 }
11: {a : line 01 g: line 02, f: line 09 }
12: {a : line 01 g: line 02, f: line 09, j: line 11 }
13: {a : line 01 b: line 12, g: line 02, f: line 09, j: line 11 }
14: {a : line 01 g: line 02, f: line 09, j: line 11 }

(d) The free identifiers of let b = g(a) in b + a are a and g. When we ask for the free identifiers
“of a function” we exclude the the parameters and the function name itself (assuming it is allowed to be
recursive), so the sole free identifier of f is a. (If we asked for the “free identifiers of the body of f,” i.e.
of the expression a + b, the answer would be {a, b}.) The entire expression has no free variables; such
expressions are said to be “closed.”

2. With static scoping, the uses of x in set_x and print_x always resolve to the global x, so we see
1 1 2 2. With dynamic scoping, the calls to set_x and print_x from inside second see the local x
instead, so we see 1 1 2 1.

3. Here’s one simple solution. Function g uses a variable (a) before it is initialized if-and-only-if control
ever reaches the third line of the function, and that occurs if-and-only-if f returns.

void g() {
int a;
f();
int b = a; // uninitialized use, but do we ever get here?

}

A similar line of reasoning (not always quite so trivial!) can be used to show that essentially every interesting
property of programs is undecidable in general. (Google “Rice’s theorem” for a theoretical exposition.) The
consequence is that compilers must necessarily approximate their analyses of program behavior.


