
CS558 Programming Languages – Fall 2023 – Suggested Study Question Solutions for Lecture 1b

1. This grammar is inspired by the well-known “dangling else” ambiguity problem, which arises in
languages where the else clause of an if-then-else statement is optional and the then and else
bodies can be arbitrary statements (including if-then-else statements!) For example, in the sentence
of part (c), the ambiguity of the grammar means that we cannot tell which i(f) the e(lse) should be
paired up with.

(a) S

S

S

k

tB

y

i

tB

n

i

(b) Here are two possible derivations; the first is the left-most derivation for the tree in (a); the second is the
right-most derivation.

S → i B t S
→ i n t S
→ i n t i B t S
→ i n t i y t S
→ i n t i y t k

S → i B t S
→ i B t i B t S
→ i B t i B t k
→ i B t i y t k
→ i n t i y t k

(c) Here are two trees:

S

S

k

eS

S

k

tB

n

i

tB

y

i

S

S

S

k

eS

k

tB

n

i

tB

y

i

(d) The grammar is ambiguous because there is at least one sentence—in particular, the one in part (c)—that
has two different parse trees.

Note that it is not correct to claim that the grammar is ambiguous because the same sentence has more
than one linear derivation sequence. Even when a sentence has a unique parse tree, as in part (a), it may
have multiple corresponding linear derivation sequences, as in part (b). Such a sentence is not enough to
demonstrate ambiguity: we must find a sentence that has two different trees.

2. (a) Here’s the parse tree:

E

T

F

d

-E

T

F

c

*T

F

b

-E

T

F

a

(b) We simply switch the order of the nonterminals in the right-hand side of the production for E:

E ::= T + E | T - E | T

The rest of the grammar remains the same. Try it on an example like a + b + c.

3. Here is a possible AST tree grammar:

Add : Exp → Exp Exp
Sub : Exp → Exp Exp
Mul : Exp → Exp Exp
Div : Exp → Exp Exp
Id : Exp → (string)

(b)

Sub

Id dMul

Add

Id cId b

Id a

The most important differences from a parse tree are that: (a) intermediate levels of nonterminals (such
as T and F), have disappeared, because they were only in the concrete grammar to enforce the intended
precedence and associativity, which are now directly reflected in the shape of the tree; and (b) there are no
explicit parentheses, again because their grouping effect is now directly reflected in the shape of the tree.

4. The concrete parse tree (zoom in!):

sexpr

’)’slist

slist

slist

sexpr

’)’slist

slist

slist

sexpr

’)’slist

slist

slist

sexpr

’)’slist

slist

slist

sexpr

num(1)

sexpr

sym(b)

sexpr

sym(+)

’(’

sexpr

sym(n)

sexpr

sym(-)

’(’

sexpr

sym(n)

sexpr

sym(Assgn)

’(’

sexpr

sym(n)

sexpr

sym(While)

’(’

The abstract parse tree:

SList

SList

SList

SList

SNum 1SSym bSSym +

SSym nSSym -

Ssym nSSym Assgn

SSym nSSym While

