Sample solution for Pierce 15.5.2.

(1) If we drop the first premise of S-REF, we have

\[
\frac{T_1 <: S_1}{\text{Ref } S_1 <: \text{Ref } T_1} \quad (\text{S-REF1})
\]

Since \(\{x:\text{Bool},y:\text{Bool}\} <: \{x:\text{Bool}\} \), we have by S-REF1 that \(\text{Ref } \{x:\text{Bool}\} <: \text{Ref } \{x:\text{Bool},y:\text{Bool}\} \). So the program

\[
(\lambda r: \text{Ref } \{x:\text{Bool},y:\text{Bool}\}. !r.y) (\text{ref } \{x=true\})
\]

or, equivalently,

\[
\text{let } r = \text{ref } \{x=true\} \text{ as Ref } \{x:\text{Bool},y:\text{Bool}\} \text{ in } !r.y
\]

will typecheck, since we can apply T-SUB to the argument to make it match the declared type (or ascription) for \(r \). But the program will clearly get stuck attempting to access the \(y \) field from a record that has none.

(2) If we drop the second premise of S-REF, we have

\[
\frac{S_1 <: T_1}{\text{Ref } S_1 <: \text{Ref } T_1} \quad (\text{S-REF2})
\]

This gives \(\text{Ref } \{x:\text{Bool},y:\text{Bool}\} <: \text{Ref } \{x:\text{Bool}\} \). So the program

\[
\text{let } r = \text{ref } \{x=true,y=true\} \text{ in } (\text{Au:Ref } \{x:\text{Bool}\}. \ u := \{x=true\}) \ r; \ r.y
\]

or, equivalently,

\[
\text{let } r = \text{ref } \{x=true,y=true\} \text{ in } \\
\text{let } u = r \text{ as Ref } \{x:\text{Bool}\} \text{ in } \\
\quad \text{u := } \{x=true\}; \\
\quad r.y
\]

will typecheck, since we can apply T-SUB to \(r \) to make it match the declared type (or ascription) for \(u \). But the program will again get stuck attempting to access the \(y \) field from a record that has none.

Sample solution for Pierce 16.2.3.

Let \(s = (\lambda r: S.r)\{x=true,y=true\}, t = \{x=true,y=true\}, S = \{x:\text{Bool}\}, \text{ and } T = \{x:\text{Bool},y:\text{Bool}\} \). Then we have \(s \rightarrow^* t, \vdash s : S, \vdash t : T, \text{ and } T <: S \text{ but not vice-versa.} \)