Sample solutions for Pierce 23.4.1.

Derivation for \(\text{id} \):

\[
\begin{align*}
\text{T-VAR} & \quad x : X \in X, x : X \quad \frac{}{} \\
\text{T-VAR} & \quad x, x : X \vdash x : X \\
\text{T-ABS} & \quad \frac{}{\lambda x : X. x : X \to X} \\
\text{T-TABS} & \quad \frac{}{\vdash \lambda x. \lambda x : X. x : \forall X.X \to X}
\end{align*}
\]

Derivation for \(\text{double} \):

\[
\begin{align*}
\text{T-VAR} & \quad f : X \to X \in X, f : X \to X, a : X \\
\text{T-VAR} & \quad x, f : X \to X, a \vdash f : X \to X \\
\text{T-APP} & \quad \frac{}{x, f : X \to X, a : X \vdash f(a) : X} \\
\text{T-ABS} & \quad \frac{}{x, f : X \to X \vdash \lambda a : X. f(a) : X \to X} \\
\text{T-ABS} & \quad \frac{}{\vdash \lambda f : X \to X. \lambda a : X. f(a) : (X \to X) \to X \to X} \\
\text{T-TABS} & \quad \frac{}{\vdash \lambda x. \lambda f : X \to X. \lambda a : X. f(a) : \forall X.(X \to X) \to X \to X}
\end{align*}
\]

Derivation for \(\text{selfApp} \):

\[
\begin{align*}
\text{T-VAR} & \quad x : \forall X.X \to X \in x : \forall X.X \to X \\
\text{T-APP} & \quad x : \forall X.X \to X \vdash x : \forall X.X \to X \\
\text{T-APP} & \quad \frac{}{x : \forall X.X \to X \vdash x[\forall X.X \to X] : (\forall X.X \to X) \to (\forall X.X \to X)} \\
\text{T-VAR} & \quad x : \forall X.X \to X \vdash x : \forall X.X \to X \\
\text{T-APP} & \quad \frac{}{x : \forall X.X \to X \vdash x[\forall X.X \to X] : (\forall X.X \to X) \to (\forall X.X \to X)} \\
\text{T-ABS} & \quad \frac{}{\vdash \lambda x : \forall X.X \to X. x[\forall X.X \to X] : (\forall X.X \to X) \to (\forall X.X \to X)}
\end{align*}
\]

Derivation for \(\text{quadruple} \), taking \(\Gamma = \text{double} : \forall X.(X \to X) \to X \to X \)

\[
\begin{align*}
\text{T-VAR} & \quad \text{double} : \forall X.(X \to X) \to X \to X \in \Gamma, X \\
\text{T-APP} & \quad \frac{}{\Gamma, X \vdash \text{double} : \forall X.(X \to X) \to X \to X} \\
\text{T-VAR} & \quad \text{double} : \forall X.(X \to X) \to X \to X \in \Gamma, X \\
\text{T-APP} & \quad \frac{}{\Gamma, X \vdash \text{double} : \forall X.(X \to X) \to X \to X} \\
\text{T-VAR} & \quad \text{double} : \forall X.(X \to X) \to X \to X \in \Gamma, X \\
\text{T-APP} & \quad \frac{}{\Gamma, X \vdash \text{double} : \forall X.(X \to X) \to X \to X} \\
\text{T-APP} & \quad \frac{}{\Gamma \vdash \lambda X. \text{double} : X \to X.(\text{double}[X]) : (X \to X) \to X \to X} \\
\text{T-TABS} & \quad \frac{}{\Gamma \vdash \lambda X. \text{double} : X \to X.(\text{double}[X]) : \forall X.(X \to X) \to X \to X}
\end{align*}
\]
Sample solution for Pierce 23.5.1.

The goal is to show Preservation for System F as shown in Figure 23-1.

Be sure to note the erratum for p. 342, which explains that the context \(\Gamma, x : T \) is considered well-formed only if every type variable free in \(T \) is bound in \(\Gamma \).

Following the hint in the answers, we begin by proving the following Lemma about preservation under type substitutions.

Lemma 1 If \(\Gamma, x, \Delta \vdash t : T \), then \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] t : [x \mapsto S] T \).

Proof. By induction on the depth of the derivation of \(\Gamma, x, \Delta \vdash t : T \), then by cases on the final typing rule.

- **(T-VAR)** Here \(t = z \) and \(z : T \in \Gamma, x, \Delta \). Clearly \([x \mapsto S] z = z \). There are two sub-cases.

 i. If \(z : T \in \Gamma \), then \(z : T \in \Gamma, [x \mapsto S] \Delta \), so by T-VAR, \(\Gamma, [x \mapsto S] \Delta \vdash z : T \). By the well-formedness condition on contexts, \(x \notin FV(T) \), so \(T = [x \mapsto S] T \), giving the desired result.

 ii. If \(z : T \in \Delta \), then \(([x \mapsto S] \Delta)(z) = [x \mapsto S] T \), so by T-VAR, \(\Gamma, [x \mapsto S] \Delta \vdash z : [x \mapsto S] T \), as desired.

- **(T-ABS)** Here \(t = \lambda x : T_1. t_2 \) where \(\Gamma, x, \Delta, x : T_1 \vdash t_2 : T_2 \) and \(T = T_1 \rightarrow T_2 \). By induction, \(\Gamma, [x \mapsto S] \Delta, x : [x \mapsto S] T_1 \vdash [x \mapsto S] t_2 : [x \mapsto S] T_2 \). So by T-ABS, \(\Gamma, [x \mapsto S] \Delta \vdash \lambda x : [x \mapsto S] T_1. [x \mapsto S] t_2 : [x \mapsto S] T_1 \rightarrow [x \mapsto S] T_2 \), i.e. \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] (\lambda x : T_1. t_2) : [x \mapsto S] (T_1 \rightarrow T_2) \), as desired.

- **(T-APP)** Here \(t = t_1 t_2 \) where \(\Gamma, x, \Delta \vdash t_1 : T_{11} \rightarrow T_{12} \), \(\Gamma, x, \Delta \vdash t_2 : T_{11} \), and \(T = T_{12} \). By induction, \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] t_1 : [x \mapsto S] (T_{11} \rightarrow T_{12}) \), and \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] t_2 : [x \mapsto S] T_{11} \). Distributing the substitution in the first of these derivations and applying T-APP, we get \(\Gamma, [x \mapsto S] \Delta \vdash ([x \mapsto S] t_1) ([x \mapsto S] t_2) : [x \mapsto S] T_{12} \); undistributing the substitution on the term gives us the desired result.

- **(T-TABS)** Here \(t = \forall Y. t_2 \) where \(\Gamma, x, \Delta, y \vdash t_2 : T_2 \) and \(T = \forall Y. T_2 \). By induction, \(\Gamma, [x \mapsto S] \Delta, y \vdash [x \mapsto S] t_2 : [x \mapsto S] T_2 \). So by T-TABS, \(\Gamma, [x \mapsto S] \Delta \vdash \forall Y. [x \mapsto S] t_2 : \forall Y. [x \mapsto S] T_2 \). Pulling the substitutions out of the quantifiers gives us the desired result.

- **(T-TAPP)** Here \(t = t_1 [T_2] \), where \(\Gamma, x, \Delta \vdash t_1 : \forall Y. T_{12} \) and \(T = [Y \mapsto T_2] T_{12} \). By induction, \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] t_1 : [x \mapsto S] (\forall Y. T_{12}) \). Pushing the substitution inside the quantifier and applying T-TAPP gives \(\Gamma, [x \mapsto S] \Delta \vdash ([x \mapsto S] t_1) ([x \mapsto S] T_2) : [Y \mapsto ([x \mapsto S] T_2)] ([x \mapsto S] T_{12}) \). Pulling the substitutions to the left gives \(\Gamma, [x \mapsto S] \Delta \vdash [x \mapsto S] (t_1 [T_2]) : [x \mapsto S] ([Y \mapsto T_2] T_{12}) \), as desired.
Next, we need a revised version of Lemma 9.3.8.

Lemma 2 If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof. By induction on the depth of the derivation of $\Gamma, x : S \vdash t : T$, and then by cases on the final typing rule. Cases T-VAR, T-ABS, and T-APP are exactly as in the proof of Lemma 9.3.8 on pp. 106-107. The remaining cases are:

- (T-TABS) Here $t = \lambda X. t_2$ where $\Gamma, x : S, X \vdash t_2 : T_2$ and $T = \forall X. T_2$. By induction, $\Gamma, X \vdash [x \mapsto s]t_2 : T_2$. So by T-TABS, $\Gamma \vdash \lambda X. [x \mapsto s]t_2 : \forall X. [x \mapsto s]T_2$, i.e., $\Gamma \vdash [x \mapsto s](\lambda X. t_2) : [x \mapsto s](\forall X. T_2)$, as desired.

- (T-TAPP) Here $t = t_1[T_2]$, where $\Gamma, x : S \vdash t_1 : \forall X. T_{12}$ and $T = [X \mapsto T_2]T_{12}$. By induction $\Gamma \vdash [x \mapsto s]t_1 : \forall X. T_{12}$. So, by T-TAPP, $\Gamma \vdash ([x \mapsto s]t_1)[T_2] : [X \mapsto T_2]T_{12}$, i.e., $\Gamma \vdash [x \mapsto s](t_1[T_2]) : [X \mapsto T_2]T_{12}$, as desired.

Finally, we can prove the preservation theorem itself.

Theorem 1 If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof. By induction on the derivation of $\Gamma \vdash t : T$, then case analysis on the final step. The cases for T-VAR, T-ABS, and T-TABS can’t occur, as no E-rule applies to them. The T-APP case is exactly as in the proof of Thm 9.39 on p. 507 (where the Substitution Lemma now refers to our Lemma 2).

The remaining case is T-TAPP. Here $t = t_1[T_2]$, $\Gamma \vdash t_1 : \forall X. T_{12}$ and $T = [X \mapsto T_2]T_{12}$. There are two possible evaluation rules

- (E-TAPP) Here $t_1 \rightarrow t_1'$ and $t' = t_1'[T_2]$. By induction, $\Gamma \vdash t_1' : \forall X. T_{12}$. Hence, by T-TAPP, $\Gamma \vdash [t_1'[T_2]] : [X \mapsto T_2]T_{12}$, as desired.

- (E-TAPP-TABS) Here $t_1 = \lambda X. t_{12}$ and $t' = [X \mapsto T_2]t_{12}$. By inversion, $\Gamma, X \vdash t_{12} : T_{12}$. So by Lemma 1, $\Gamma \vdash [X \mapsto T_2]t_{12} : [X \mapsto T_2]T_{12}$, as desired.