Chips with Confidence:
Formal Datapath Verification

Dr John O’Leary
Principal Engineer, Intel Corporation
john.w.oleary@intel.com

Outline

 What we are verifying and why
* Verification technology

* Verification technology + X = Impact
— Specifications
— Methodology
— Reuse

It used to be so simple

BRANCH
PREDICTION
LOGIC

INSTRUCTION
DECODE

: 'COMPLEX
BUS INTERFACE INSTRUCTION
LoGIC | SUPPORT

|| SUPERSCALER
INTEGER
EXECUTION

UNITS Ll —
=2 PIPELINED

FLOATING

MP LOGIC

1/21/2016

Now it is not so simple

Span of Products

e 4 %":‘-ih Y
ol s - -
Wearable = loT Mobile Client Server
CPU S EEEE——————
Graphics/GPU <)
Imaging <4
Security e
Wireless (T

Only Way to Build All of These is Through an SoC Methodology
LONDON ANALYST SUMMIT May 2014 (i@

1/21/2016 4

SoC methodology

MOORE'S LAW

INTEGRATION

Shared ingredients

il SoC

: Bay Ira

Ex

B
.ml‘
i
i &
)
‘ul

: |
=

Bay Trail: User-visible datapaths

Development with shared IPs

|
— “IPs” - Ingredients
-

R : .

RTL development !
Each product | Integration pOst-Si Product
Firmware development

| [
| »

0 2 3

1/21/2016 8

Cost of a bug vs time found $10°

CPU n CPU n+1
Gfx n Gfx n+1 $ 106

Wireless n Wireless n+1

pOSt':Sﬁ

[
»

3

1/21/2016 9

Is a S1B bug possible?

e Mid-1994 — FDIV flaw detected in the
Intel Pentium® processor

sy ¢ January 1995 - Intel announces a pre-
p;’,‘,t,ﬁ,'m ; tax charge of $475 million against
| | earnings
TS« A 2003 analysis estimated that a

similar escape could cost S12B, at
then-current product volumes

Outline

 What we are verifying and why
* Verification technology

e Verification technology + X = Impact
— Specifications
— Methodology
— Reuse

11

Formal tools at Intel

RTL-vs-RTL and RTL-vs-schematic equivalence verification
— Widely deployed across the industry

RTL assertion checking
— Broad-spectrum bug detection for IP blocks, interfaces, etc
— Principally bounded model checking using SAT-solvers

Datapath verification
— Applied to virtually all Intel CPU + Gfx datapath designs
— Similar approaches used in Centaur, IBM, AMD
Architecture, microarchitecture (cache protocols, etc)
— TLA+/TLC, Murphi, Spin
Software and firmware

— Static analysis widespread (e.g. Klocwork)

— Some BMC, concolic testing, theorem proving
12

A brief history of datapath verification
technology at Intel

* 1990-1994 — Intel/SRC funded academic research on BMDs,
HDDs, word-level model checking (E.M.Clarke, R.E.Bryant);
Symbolic trajectory evaluation —STE (Bryant, C.-J.H.Seger)

e Mid-1994 — FDIV flaw detected in the Pentium® processor

e Early 1995 — FV research group formed in Intel Strategic CAD
Labs (SCL). Seger VF, O’Leary, Jones, Zhao hired.

e Mid-1995 — HDD-based word-level model checking demoed

e 1995-1996 — WLMC applied in SCL to verify properties of
Pentium® Pro FPU functional blocks. Seger, Aagaard hired.

e 1997 — FIST bug detected in the Pentium® Pro processor

 1997-1998 — Complete Pentium® Pro FPU verified against
high-level specs, with machine-checked composition
argument. Melham VF #1/N.

* 1999-present — production use of FP FV technology
e 2004 - fixpoint reached at our current tool suite

Intel’s Forte system

Arithmetic operations & theorems
Intel CPU micro-instruction specs
Debugging routines

Interactive, deductive
reasoning about reFlLect
programs

Libraries

For writing formal specifications
and verification scripting

Checks bounded LTL
properties of RTL
designs using
symbolic simulation

L}

(System) Verilog RTL

14

reFLect

 Higher-order, typed, lazy, functional

e Supports development of formal specifications,
libraries, verification scripts, ...

let bit_add (xv, yv) =

letrec f [] [] = [F]

/A fxxv) (y:yv) =
val [cin,res] =f xvyvin
let sum =(x XORy) XOR cin in
let cout=(x ANDY) OR(x ANDcin) OR(yANDcin)in
(cout : sum :res)

in

fxvyv;

add::(bool list # bool list) -> bool list

reFLect and BDDs

let a = variable_vector "a[2:0]";
let b = variable vector "b[2:0]";

a,
[a[2], a[1], a[0]]::bool list

bit_add (a, a);
[a[2], a[1], a[0], F]::bool list

bit_add (a, b):

...,

b[1]&a[1]&b[2]&a[2] + b[0]&a[0]&a[1]&b[2]&a[2] +
b[0]&a[0]&b[1]&b[2]&a[2] + b[0]&!b[1]&!b[2]&a[2] +
1a[0]&!b[1]&b[2]&a[2] + ...,

b[0]&a[0]&b[1]&a[1] + 'b[0]&!b[1]&a[1] + 'a[0]&!b[1]&a[1] +
Ib[0]&b[1]&1a[1] + !'a[0]&b[1]&!a[1] + ...,

Ib[0]&a[0] + b[0]&!a[0]]::bool list 5

Symbolic trajectory evaluation (STE)

X=p y=q
l l x=p /\ y=q
> ->
l [c,s] = bit_add([p], [q])

 Compute C(p,q), S(p,q) via symbolic simulation
* Check this Boolean formula for validity:

(C(p,q) = q&p) & (S(p,q) = Iq&p + q&!p)
e Built-in abstraction: XE 0, XE 1

Approach

High level
spec

|

Bit level specs

Theorem proving

STE (automatic)

18

RTL design

A B C

Booth
encoder

I(N°(R))) = i(A) *i(B) +i(C)

T — N(x) = “x in the i'th next cycle”

generation

— i(x) = “bit-array x interpreted as
an integer”

Wallace tree
adder network
v

— *, + are the usual integer

operations

19

Bit-level verifications with STE

N(PP[n]) =)
bit_mul(A, BE[n])

N2(P) = ... -

e

—

Partial products
generation

— C —

Wallace tree

v]

_ N¥(R) =
bit_add(N?(P), C)

R

20

Deduction connects bit-level
operations to mathematics

- Va,b. i(bit_add(a, b)) =i(a) +i(b)

\ength a=length b

x=A /\ y=B = N(z) = bit_add(A, B)
= { property of functions }

x=A /\ y=B = i(N(z)) = i(bit_add(A, B))
= { theorem about bit_add }

x=A /\ y=B = i(N(z)) = i(A) + i(B)

Deduction ensures correctness and

completeness of decomposition
i(B) =
i(N(PP[n])) =i(A) * i(BE[n]), for each n
= X i(N(PP[n])) * 2kn
(N*(R)) = i(N2(P) +i(C)

\

i(N3(R)) = +i(C)
=X i(N(PP[n])) * 2% +i(C)
= (i(A) * i(BE[n])) * 2% +i(C)
= i(A) * +i(C)
=i(A) *i(B) +i(C)

- STE

Goaled

* LCF-style interactive theorem prover, following in the
footsteps of HOL and HOL Light

* Theories of reFLect data types
— Natural numbers, integers, rationals
— Lists, pairs, reFLect ADTs
— Bitstring arithmetic
* Proof automation
— Unconditional and conditional (contextual) rewriting
— First order solver based on model elimination
— Universal linear arithmeticover N, Z, Q

Verification technolo

yee tl.\u-.u'rua\:mnwr:-u-u oL T, .y ML L

Graph-Based Algorithms for Bog
Manipulation

RANDAL I IIH\'.HNI' PR

Ahriroct—in s paper we sl a g dnis siEcOEe Tt & variey of el
Mmuhmmrud-mhﬂ-ﬂ-.d o 24 anipalsting B
Latard ahpiknis Fupthaon & appresri! ed b daeried, ks |:pfc-:ﬂdi|m a1
Mu-wl-whlunm-nﬂmhlmﬁuﬂlp o SUITY T

Ter 1] el Al (L bt wills Tusther ppdlricions = bl s s

iniing al deckina © riabies fis e prapke Altungh B Paaeid every Tansos o
- dinnpnlﬂlulu uuu‘:.ﬁuli;ﬂ

L
e crmplenity nmpodﬂllmﬂf i al th :n_nw.hq',\‘ﬂ:
lr-phrmw-mkdm. mhwnvﬂkhl-hnw | i SRR
1 gropba 45 lﬂglmlmﬁr.'ﬂlwﬂl!wﬂn—uh P
wigsrithmes o lagis doh apnoral drawhid

Trem oy s 10 prabbem

wrstfuatlon st Jrmassisie W granthuling uf w appessch, TRUET eS|
s T —Bashram 180ctibs whaary docision cigraTT. i‘::;r"h_‘_""
lagh e et ekl s pulRlieT e £

gy b i 0
" sprian s
L Jsmasmt =T n pxprntidl

‘B\:VEZ\LF."\,\' Algebr o @ aTTETE of conipaRe R0RE ase o]
ATt aad digast e Jesige SAuny okl B oaiy differsd
dpial Ingh BIED) EsIng, anificil e, anl cquivainos O
FrATHINFRTIES can b ﬂ'-["-"-—a:dlu v’.\mru-'i -'Wawl:--ﬂ e ¥ 1]
Poxibpan imate T .
giferd ;lgnﬂhn\ for rv;n:-.rmw e myanipiReg Bt SITA0L sy
gan furalisd ‘_\l’mllh,'.fl!.' l,ill.lq-:nuell,.'_ Ay ol vhe weks apddenly R
o ik (e ¥ perbm Lk [spch B ® m——T
ading whahar iheed auisms 8Ty nmgm\-’m.ll (R abves fa thia @
pachihm 3 g an Doniloan ripnrwnn a0 1 |‘-""||$1|‘ rlluww.n.
iyl & vami Hpcdean .::pn:ur.nl e ¥ gt foRTIoR W gr"h-‘
[LT snbutbrs W HP-rampaE 20 o NP Alagram oY
RTITE provelems 15 ('m-:lpalll_l_ all KpaTATh l“v:nfh:-c trad Yoy Ak
1o st TR b ORI roquire. & T w0 S, e Desdenn)
arpinsal of soovpaier H0E dhat griTa® ctr{mlmly il 1 TosinsI e
wire v the il Thou makes o P L tha tamg b
eelaiive pifEnCE nl caffgened approsches W TN {mr v
arsd manipulalivg o (umcmnos. 0 she wone e, 31l spqueas el
\:lm‘ll:wﬁuhnp{mm:n gomirly a5 the pEte apprmsh 1 srovanoely
repressRing rnctices by e snph tales and definind allof st 8
the dcsived aperaEIns in tere of @Rl glfpct os anah b avsl ot
ermice 10 peacticn, By wilicing FEOTR devat ﬂri’ﬂ-‘rl!lm NETECER
and mamigslation algorshen, *F can often ol s argamstd

expiavnisd sl alios- oy akge]
depradd

sy Rt ke 38, 1) {1, i T et wngle)
o ol ® Tor (beierne Aasimieil enrarch Pl ApEST w2
aies Dty 1711 wd YT racriing
e -h-lb:pn--mn’m-n'u-nr,l N YU Qe

A, 22242
igetat]

ey P
RN Lo Diankey

I'ﬂm-‘!'?ﬂ:-ﬁﬁ-m e R

Formal Hardware Veri
. Verifica p
Symbolic Temary Traje ca

Randal E. Bryant
Schoo L Beatty
School of Computer Scicnce
O e eoacy

urgh, PA 15213 USA

Abstract

Symbolic trajeciary i
Symbelic tnjecien evalustion is » mew
b v i cove moling cxpbl-
mymbali gle simulaion wih same of :::.PHL
l,bd such mn evaluaior ol o m.hp&% h:‘ulym
L R S
p -~ b
Mr:\:%:“l::;nlhliy of COSMOS hswdu.r:c:lmnm _W
S e hsb.u: nidel, whm the dvind value ummn
ic value. This program :nfmmlll‘:vul.fy -

beme comtaining
. eomple:
dewailed timing, md P;I"mm such as switch-level modeds,

1. Introduciion

Foreal verilicati
on secks
mal desi overeome I .
i den g by b, T e weskres of e
ety | swilch-Jeval model of the werifier, ene can
iﬁhr;u,.mu‘[m desstiption of the EAPEN =
Joa for all possibie eysiemn speration. Formal desired belaw
comples. mu‘"‘sly desirable as system “mmﬁuﬂn [
- With the ineroducti become
operating subsysierss, it votce of pipelining e coacurpenty.
rloemal mehod 1 evi es mcreasingly difficeti i
rween logicall e B friany subdle i % wing
y mnrelaied system serivites o inlmactions b

In i pigpeer we descrd
ihe & Bew
s spmenss spproach 1 Fams
'L Eeg the el] —
iy st o e ! verlicatan
found in with some of the b lic,
s i e i iy el
mumi’w-’"”‘,‘"mmh tempenal
e e o
“"dlppllc-m:(r:h “"'I‘-Frac..ﬂn,,_: in 3
sign examplos. A o ol wring nuroe of o
presenied in (2], presentation of the farmal lagic is rh:
“This pmach
Ay, AR Do 3y e t I
e S o bl N el |
Permission 0 é*‘
peuvided tha the .
-

addvaniage, (e ACH
g .o gt el
Asseenion §

o nonoe i preen that

HTgREE Machine by
rv
Torcopy ntbemwise, or i sepabli

reguires a lee andior spesific permisnn,
o 280 ACMIIEEE ma-h
AN 89791355291 I005,0307 $1.50 k

24

X: Arithmetic FV’s road to El Dorado

Forte + STE + HOL Success!

Specifications

Reuse 3500+ uops

Methodology

Specifications

Clear, abstract, unambiguous specifications are more valuable than
gold

— Even if the specification is prone to change

— Even if there is no fully-formal link to implementation

For arithmetic datapaths we can write such specifications
For other functionality, design intent is expressed by English text
and other artifacts:

— Tables

— Diagrams (bubble diagrams, block diagrams, message sequence
charts)

— Pseudo-code
Unanswered questions:

— How can we improve specification quality for non-arithmetic?

— Can we practically check
» self-consistency of specifications
* Firmware/software/hardware implementations against specifications?

Environment specifications

Part of every spec is an accurate-enough environment model
— For hardware blocks, this means modeling neighboring blocks

— For software routines, this means modeling the caller, subroutines,
library functions, etc

— For firmware the environment might be both software and hardware

The effort of writing environment models limits the uptake of
formal methods

Research needed:
— Automatic abstraction of environment models from interfaces and
code
— Synthesis of environment models from simulation traces

— Environment modeling at the hardware/firmware interface (esp
timing)

Methodology

High level
spec

|

Circuit API

Bit level specs

|

!

API factors design-specific
information about signal
names, timing, ...

'

Theorem proving

STE (automatic)

28

Circuit API

* The glue between bit-level specs
and RTL

1 * |Isolates signal names, timing, ...

API

4 * Developed per-design during the
} initial phase of verification and
RTL evolves with RTL changes

29

Exec cluster verification methodology

. —¥
J_u Thousands of micro-operations

Implementation

API presents a uniform
interface to the RTL
design and supports
portability between
design projects

Exec Cluster RTL

See Roope Kaivola, et al. Replacing testing with formal verification
in Intel Core™ i7 processor execution engine validation. CAV 2009.

Methodology enables wide
deployment

Tens of designs in progress

100’s or 1000’s of operations per
design

Live RTL, changing frequently <5
until a few weeks before tapeout ges= e

Specs and scripts > 1M LOC
“Verification engineering”

Re-use: Specs and proofs

Products come in related families and generations

— Families: server, desktop, mobile and ultramobile parts

— Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor
Robust reusable proofs

— Allow the cost of verification to be amortized

— Certify common functionality across generations and families
Many Intel datapath proofs are descended (with modification) from the
Intel Pentium® 4 processor generation

— “The cost of verifying is less important than the cost of re-verifying”

An analogous scenario in software:
— Pick a key component of Linux version N
— Develop a specification and verify the component against it
— Do it again for version N+1
— Do it again for version N+2
— Port to the equivalent BSD component

We need to better understand how to reuse proofs and verification
results (and validation collateral in general)

Summary

e Datapath verification widely deployed at Intel

* Verification technology necessary, not
sufficient

* As important:
— Specifications
— Methodology
— Re-use

Selected References

Technology

1. C.-J. H. Seger, and R. E. Bryant, Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories, Formal Methods
in System Design, Vol. 6, No. 2 (March, 1995), pp. 147-190

2. J.Yangand C.-J.H. Seger, “Introduction to Generalized Symbolic Trajectory Evaluation”, IEEE Transactions on VLS| Systems,
vol. 11, no.3 (June 2003), pp. 345-353.

3. JW. O’Leary, J. Grundy and T.F. Melham, “A Reflective Functional Language for Hardware Design and Theorem Proving”, Fifth
Workshop on Designing Correct Circuits, Barcelona, Spain, March 2004.

4. C.-J.H.Seger, R.B. Jones, JW. O’Leary, T. Melham, M.D. Aagaard, C. Barrett, and D. Syme, “An Industrially Effective
Environment for Formal Hardware Verification”, IEEE Transactions on Computer-Aided Design, vol. 24, no.9 (September
2005), pp. 1381-1406.

5.). Grundy, T.F. Melham, and J.W. O’Leary, “A Reflective Functional Language for Hardware Design and Theorem Proving”,
Journal of Functional Programming, vol. 16, no. 2 (March 2006).

6. J. O’Leary, R. Kaivola, and T.F. Melham, “Relational STE and Theorem Proving for Formal Verification of Industrial Circuit
Designs”, FMCAD’13.

Methodology and applications:

1. JW. O’Leary, X. Zhao, R. Gerth, and C.-J.H. Seger, “Formally Verifying IEEE Compliance of Floating-Point Hardware”, Intel
Technology Journal (First Quarter, 1999).

2. R. B. Jones, JW. O’Leary, C.-J. H. Seger, M. D. Aagaard, and T. F. Melham, “Practical Formal Verification in Microprocessor
Design”, IEEE Design & Test of Computers, vol. 18, no. 4 (July/August 2001), pp. 16-25.

3. Roope Kaivola, Katherine R. Kohatsu: Proof engineering in the large: formal verification of Pentium® 4 floating-point divider.
STTT 4(3): 323-334 (2003)

4. Roope Kaivola, Naren Narasimhan: Formal Verification of the Pentium® 4 Floating-Point Multiplier. DATE 2002: 20-27.

5. F1{c7>8p1e85aivola: Formal Verification of Pentium® 4 Components with Symbolic Simulation and Inductive Invariants. CAV 2005:

6. Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav, Anna Slobodova,

Christopher Taylor, Vladimir Frolov, Erik Reeber and Armaghan Naik. Replacing testing with formal verification in Intel Core™
i7 processor execution engine validation. CAV 2009.

