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It used to be so simple
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Now it is not so simple
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SoC methodology
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Bay Trail: User-visible datapaths




Development with shared IPs
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Cost of a bug vs time found $10°

CPU n CPU n+1
Gfx n Gfx n+1 $ 106

Wireless n Wireless n+1

pOSt':Sﬁ

[
»

3

1/21/2016 9



Is a S1B bug possible?

e Mid-1994 — FDIV flaw detected in the
Intel Pentium® processor

sy ¢ January 1995 - Intel announces a pre-
p;’,‘,t,ﬁ,'m ; tax charge of $475 million against
| | earnings
TS« A 2003 analysis estimated that a

similar escape could cost S12B, at
then-current product volumes
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Formal tools at Intel

RTL-vs-RTL and RTL-vs-schematic equivalence verification
— Widely deployed across the industry

RTL assertion checking
— Broad-spectrum bug detection for IP blocks, interfaces, etc
— Principally bounded model checking using SAT-solvers

Datapath verification
— Applied to virtually all Intel CPU + Gfx datapath designs
— Similar approaches used in Centaur, IBM, AMD
Architecture, microarchitecture (cache protocols, etc)
— TLA+/TLC, Murphi, Spin
Software and firmware

— Static analysis widespread (e.g. Klocwork)

— Some BMC, concolic testing, theorem proving
12



A brief history of datapath verification
technology at Intel

* 1990-1994 — Intel/SRC funded academic research on BMDs,
HDDs, word-level model checking (E.M.Clarke, R.E.Bryant);
Symbolic trajectory evaluation —STE (Bryant, C.-J.H.Seger)

e Mid-1994 — FDIV flaw detected in the Pentium® processor

e Early 1995 — FV research group formed in Intel Strategic CAD
Labs (SCL). Seger VF, O’Leary, Jones, Zhao hired.

e Mid-1995 — HDD-based word-level model checking demoed

e 1995-1996 — WLMC applied in SCL to verify properties of
Pentium® Pro FPU functional blocks. Seger, Aagaard hired.

e 1997 — FIST bug detected in the Pentium® Pro processor

 1997-1998 — Complete Pentium® Pro FPU verified against
high-level specs, with machine-checked composition
argument. Melham VF #1/N.

* 1999-present — production use of FP FV technology
e 2004 - fixpoint reached at our current tool suite



Intel’s Forte system

Arithmetic operations & theorems
Intel CPU micro-instruction specs
Debugging routines

Interactive, deductive
reasoning about reFlLect
programs

Libraries

For writing formal specifications
and verification scripting

Checks bounded LTL
properties of RTL
designs using
symbolic simulation

L}

(System) Verilog RTL
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reFLect

 Higher-order, typed, lazy, functional

e Supports development of formal specifications,
libraries, verification scripts, ...

let bit_add (xv, yv) =

letrec f [] [] = [F]

/A fxxv) (y:yv) =
val [cin,res] =f xvyvin
let sum =(x XORy ) XOR cin in
let cout=(x ANDY ) OR(x ANDcin) OR(yANDcin)in
( cout : sum :res)

in

fxvyv;

add::(bool list # bool list) -> bool list



reFLect and BDDs

let a = variable_vector "a[2:0]";
let b = variable vector "b[2:0]";

a,
[a[2], a[1], a[0]]::bool list

bit_add (a, a);
[a[2], a[1], a[0], F]::bool list

bit_add (a, b):

...,

b[1]&a[1]&b[2]&a[2] + b[0]&a[0]&a[1]&b[2]&a[2] +
b[0]&a[0]&b[1]&b[2]&a[2] + b[0]&!b[1]&!b[2]&a[2] +
1a[0]&!b[1]&b[2]&a[2] + ...,

b[0]&a[0]&b[1]&a[1] + 'b[0]&!b[1]&a[1] + 'a[0]&!b[1]&a[1] +
Ib[0]&b[1]&1a[1] + !'a[0]&b[1]&!a[1] + ...,

Ib[0]&a[0] + b[0]&!a[0]]::bool list 5



Symbolic trajectory evaluation (STE)

X=p y=q
l l x=p /\ y=q
> ->
l [c,s] = bit_add([p], [q])

 Compute C(p,q), S(p,q) via symbolic simulation
* Check this Boolean formula for validity:

(C(p,q) = q&p) & (S(p,q) = Iq&p + q&!p)
e Built-in abstraction: XE 0, XE 1



Approach

High level
spec

|

Bit level specs

Theorem proving

STE (automatic)
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RTL design

A B C

Booth
encoder

I(N°(R))) = i(A) *i(B) +i(C)

T — N(x) = “x in the i'th next cycle”

generation

— i(x) = “bit-array x interpreted as
an integer”

Wallace tree
adder network
v

— *, + are the usual integer

operations
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Bit-level verifications with STE

N(PP[n]) = )
bit_mul(A, BE[n])

N2(P) = ... -

e

—

Partial products
generation

— C —

Wallace tree

v ]

_ N¥(R) =
bit_add(N?(P), C)

R
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Deduction connects bit-level
operations to mathematics

- Va,b. i(bit_add(a, b)) =i(a) +i(b)

\ength a=length b

x=A /\ y=B = N(z) = bit_add(A, B)
= { property of functions }

x=A /\ y=B = i(N(z)) = i(bit_add(A, B))
= { theorem about bit_add }

x=A /\ y=B = i(N(z)) = i(A) + i(B)



Deduction ensures correctness and

completeness of decomposition
i(B) =
i(N(PP[n])) =i(A) * i(BE[n]), for each n
= X i(N(PP[n])) * 2kn
(N*(R)) = i(N2(P) +i(C)

\

i(N3(R)) = +i(C)
=X i(N(PP[n])) * 2% +i(C)
= (i(A) * i(BE[n])) * 2% +i(C)
= i(A) * +i(C)
=i(A) *i(B) +i(C)

- STE




Goaled

* LCF-style interactive theorem prover, following in the
footsteps of HOL and HOL Light

* Theories of reFLect data types
— Natural numbers, integers, rationals
— Lists, pairs, reFLect ADTs
— Bitstring arithmetic
* Proof automation
— Unconditional and conditional (contextual) rewriting
— First order solver based on model elimination
— Universal linear arithmeticover N, Z, Q



Verification technolo
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X: Arithmetic FV’s road to El Dorado

Forte + STE + HOL Success!

Specifications

Reuse 3500+ uops

Methodology



Specifications

Clear, abstract, unambiguous specifications are more valuable than
gold

— Even if the specification is prone to change

— Even if there is no fully-formal link to implementation

For arithmetic datapaths we can write such specifications
For other functionality, design intent is expressed by English text
and other artifacts:

— Tables

— Diagrams (bubble diagrams, block diagrams, message sequence
charts)

— Pseudo-code
Unanswered questions:

— How can we improve specification quality for non-arithmetic?

— Can we practically check
» self-consistency of specifications
* Firmware/software/hardware implementations against specifications?



Environment specifications

Part of every spec is an accurate-enough environment model
— For hardware blocks, this means modeling neighboring blocks

— For software routines, this means modeling the caller, subroutines,
library functions, etc

— For firmware the environment might be both software and hardware

The effort of writing environment models limits the uptake of
formal methods

Research needed:
— Automatic abstraction of environment models from interfaces and
code
— Synthesis of environment models from simulation traces

— Environment modeling at the hardware/firmware interface (esp
timing)



Methodology

High level
spec

|

Circuit API

Bit level specs

|

!

API factors design-specific
information about signal
names, timing, ...

'

Theorem proving

STE (automatic)

28



Circuit API

* The glue between bit-level specs
and RTL

1 * |Isolates signal names, timing, ...

API

4 * Developed per-design during the
} initial phase of verification and
RTL evolves with RTL changes

29



Exec cluster verification methodology

. —¥
J_u Thousands of micro-operations

Implementation

API presents a uniform
interface to the RTL
design and supports
portability between
design projects

Exec Cluster RTL

See Roope Kaivola, et al. Replacing testing with formal verification
in Intel Core™ i7 processor execution engine validation. CAV 2009.



Methodology enables wide
deployment

Tens of designs in progress

100’s or 1000’s of operations per
design

Live RTL, changing frequently <5
until a few weeks before tapeout ges= e

Specs and scripts > 1M LOC
“Verification engineering”




Re-use: Specs and proofs

Products come in related families and generations

— Families: server, desktop, mobile and ultramobile parts

— Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor
Robust reusable proofs

— Allow the cost of verification to be amortized

— Certify common functionality across generations and families
Many Intel datapath proofs are descended (with modification) from the
Intel Pentium® 4 processor generation

— “The cost of verifying is less important than the cost of re-verifying”

An analogous scenario in software:
— Pick a key component of Linux version N
— Develop a specification and verify the component against it
— Do it again for version N+1
— Do it again for version N+2
— Port to the equivalent BSD component

We need to better understand how to reuse proofs and verification
results (and validation collateral in general)



Summary

e Datapath verification widely deployed at Intel

* Verification technology necessary, not
sufficient

* As important:
— Specifications
— Methodology
— Re-use
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