
CS410P/510 Programming Language Compilation Practice Final

Instructions

• This exam has 5 questions, for a total of 75 points.

• You may spend up to 1 hour, 50 minutes (110 minutes) on the exam.

• The exam is closed-book, closed-notes, except that one 8.5”x11” single-sided sheet of
handwritten notes is permitted.

• No computing devices (laptops, tablets, cell phones, etc.) may be used.

Concrete syntax for all the languages mentioned in the exam can be found
on the last two pages.

CS410P/510 Programming Language Compilation
Practice Final Exam

1. [20 points] Loops.

Consider the following x86Var,Def
callq∗ program.

.globl main
live-before =

main:
movq $0, a

live-after =
movq $0, b

live-after =
movq $0, x

live-after =
jmp block1

live-before =
block1:

cmpq $4, x
live-after =

jl block2

jmp block3

live-before =
block2:

movq b, a
live-after =

addq $14, b
live-after =

movq $1, c
live-after =

addq c, x
live-after =

jmp block1

live-before =
block3:

movq a, %rax
live-after =

retq

Page 2 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

(a) [5 points] Draw the control-flow graph for this program.

Solution:

vertices: main, block1, block2, block3

edges: main -> block1

block1 -> block2

block1 -> block3

block2 -> block1

(b) [10 points] On the previous page, fill in the live-after and live-before sets at each
specified point in the program. Ignore %rax, %rsp, and %rbp.

Solution:

.globl main
live-before = {}

main:
movq $0, a

live-after = a
movq $0, b

live-after = a,b
movq $0, x

live-after = a,b,x
jmp block1

live-before = a,b,x
block1:

cmpq $4, x
live-after = a,b,x

jl block2

jmp block3

live-before = b,x
block2:

movq b, a
live-after = a,b,x

addq $14, b
live-after = a,b,x

movq $1, c
live-after = a,b,x,c

addq c, x
live-after = a,b,x

jmp block1

live-before = a
block3:

Page 3 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

movq a, %rax
live-after = {}

retq

(c) [5 points] The algorithm used in Chapter 5 to compute liveness information for code
generated from LIf programs has the nice property that it considers each block and
each instruction just once. Explain, briefly but clearly, why that algorithm does
not work for programs like this one.

Solution:

In programs with loops, the liveness analyses for different blocks can be mutually
dependent, so no single pass through the blocks can suffice.

Page 4 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

2. [10 points] Heap.

Draw a graph that represents the heap as it would look just after the following LTup

expression is evaluated.

(4,(True,6),5)

The nodes in your graph are allocated objects (draw them as rectangles) and the directed
edges are pointers. The rectangles should be subdivided into a box for each 64-bit
element. If a box represents a pointer, then draw an arrow from it to the object it points
to. If the box represents an integer or Boolean, simple write the value in the box. If the
box contains tag information, then show the individual bits and annotate to describe
which bits represent what.

Reminder: The least-significant bit of the tag is the forwarding bit; the next 6 bits are
the length (in binary); the remaining bits are the pointer mask.

Solution:

True

11100000…

forwarding bitlengthpointer mask

10100000…

forwarding bitlengthpointer mask

6

0

10

4 5

Page 5 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

3. [15 points] Root Stack.

(a) [5 points] Briefly but clearly explain the purpose of the root stack and what is
stored in it.

Solution: The purpose of the root stack is to make live pointers into the heap
visible to the garbage collector. Any variable that holds a heap pointer and
is potentially live across a call to the collector is assigned to a root stack slot
(rather than to a register or ordinary stack slot).

(b) [10 points] Draw a picture of the root stack and its contents at the moment when
variable v is assigned into during execution of the following LTup program. For each
slot in the root stack, state which variable is stored in the slot, and the current
value of that variable. (You do not have to describe the tag fields of the values.)
Make it clear which direction the stack is growing (i.e., which slot represents the
top-of-stack).

def f (x:int) -> int:
t = (x,x)
u = (t,t)
v = u[0] # what does the root stack contain at this point?
return v[1]

a = (30,40)
b = (a[1],a[0])
c = f(2)
print (b[0] + c)

Solution:

At the point where v is assigned into, the root stack contains two entries:

top-of-stack: | t | --> (2,2)

base-of-stack: | b | --> (40,30)

Page 6 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

4. [20 points] Functions.

Consider the following CTup program.

def f(x:int, y:int) -> int:
f_start:

print(x)
z = y + y
return z

def g(h:Callable[[int, int], int]) -> None:
g_start:

a = h(42, 21)
print(a)
return

def main() -> int:
main_start:

t = {f}
{g}(t)
return 0

(a) [5 points] Give an assignment of each variable (parameter, local, temporary) to a
register, using the standard X86-64 calling conventions. You do not have to match
the exact details of our compiler’s register allocation scheme, but, as in that scheme,
your solution should not require saving caller-save registers over calls, and should
otherwise minimize the use of callee-save registers.

As a reminder:

• First six arguments go in registers rdi,rsi,rdx,rcx,r8,r9, in that order.

• Return register is rax.

• Caller-save registers are: rax rcx rdx rsi rdi r8 r9 r10 r11.

• Callee-save registers are: rsp rbp rbx r12 r13 r14 r15. Of these, rsp is
reserved for the stack pointer and rbp for the base pointer.

Assignment:

x:

y:

z:

h:

a:

t:

Page 7 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

Solution:

One solution that minimizes moves:

x: rdi (or some other caller-save register, avoiding rsi)

y: rbx (or some other callee-save register)

z: rbx (or some caller-save register.

It’s OK to use this particular callee-save register here,

because it is already in use to store y in this function)

h: rdx (or some other caller-save register, avoiding rdi, rsi)

a: rdi (or some other caller-save register)

t: rdi (or some other caller-save register)

Page 8 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

(b) [15 points] Show the final x86Def
callq∗assembly code for the start block of each func-

tion, using the register assignment you gave for part (a). You do not need to show
the code for entry or exit blocks of the functions. Again, you do not have to match
the exact details of our compiler’s instruction selection scheme, but your code should
be at least as efficient as what is produced by that scheme. In particular, you should
prefer direct calls over indirect calls wherever possible.

Solution:

f_start:
movq %rsi, %rbx
callq print_int
addq %rbx, %rbx
movq %rbx, %rax
jmp f_conclusion

g_start:
movq %rdi, %rdx
movq $21, %rdi
movq $42, %rsi
callq *%rdx
movq %rax, %rdi
callq print_int
jmp g_conclusion

main_start:
leaq f(%rip), %rdi
callq g
movq $0, %rax
jmp main_conclusion

Page 9 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

5. [10 points] Interpreters.

Interpretating a virtual machine instruction set (such as JVM bytecode) in software is
inherently less efficient than executing a real machine instruction set in hardware. Name
two fundamental interpreter tasks that can be expensive compared to their hardware
equivalents. For each task, briefly describe an interpreter optimization technique that
may help to reduce the cost.

Solution: Two fundamental costs are (i) instruction dispatch; (ii) operand ac-
cess. The first can be improved by using threaded code and/or introducing super-
instructions; the second by arranging for operands to live in machine registers, e.g.
using stack caching.

Page 10 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

Concrete Syntax of Languages

LTup

cmp ::= == | != | < | <= | > | >= | is

exp ::= int | bool | var
| input int() | - exp | not exp | exp + exp | exp - exp
| exp and exp | exp or exp | (exp)
| exp cmp exp | exp if exp else exp
| exp(exp, . . .) | exp, . . . ,exp | () | exp[int]

stmt ::= print(exp) | exp | var = exp | if exp: stmt+ else: stmt+

| while exp: stmt+ | return exp | return | exp[int] = exp
type ::= int | bool | tuple[type, . . .] | Callable[[type, . . .], rtype]
rtype ::= type | None

def ::= def var(var:type, . . .) -> rtype: stmt+

LTup ::= def . . . stmt . . .

CTup

atm ::= int | bool | var | global
cmp ::= == | != | < | <= | > | >= | is

exp ::= atm | input int() | - atm | not atm | atm + atm | atm - atm
| atm cmp atm | {label} | atm(atm, . . .) | {label}(atm, . . .)
| atm[int] | allocate(int,type)

stmt ::= print(atm) | exp | var = exp | atm[int] = atm | collect(int)
tail ::= return exp | return | goto label

| if atm cmp atm: goto label else: goto label
type ::= int | bool | tuple[type, . . .] | Callable[[type, . . .], rtype]
rtype ::= type | None

block ::= label:stmt∗ tail
def ::= def label(var:type, . . .) -> rtype: block ∗

CTup ::= def . . .

Note: the concrete expression {label} corresponds to the AST form FunRef(label).

Page 11 of 12

CS410P/510 Programming Language Compilation
Practice Final Exam

x86Var,Def
callq∗

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg) | label(%rip) | var
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | callq *arg | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr | leaq arg, %reg

block ::= instr+

def ::= .globl label (label: block)∗

x86Var,Def
callq∗ ::= def ∗

Note: this is the same as x86Def
callq∗, below, except that var is allowed as an arg .

x86Def
callq∗

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg) | label(%rip)
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | callq *arg | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr | leaq arg, %reg

block ::= instr+

def ::= .globl label (label: block)∗

x86Def
callq∗ ::= def ∗

Page 12 of 12

