
CS410P/510 Programming Language
Compilation
Winter 2024

Lecture on Garbage Collection

1

BASIC GARBAGE COLLECTION

Garbage Collection (GC) is the automatic reclamation of heap records
(“objects”) that will never again be accessed by the program.

GC is widely used in languages that support heap allocation, because
the alternative—explicit deallocation—is tedious, error-prone, and often
non-modular.

Historically, GC was perceived to be “expensive” because of its runtime
overheads, but in most cases the expense is worth it! (Also, explicit
deallocation isn’t free either.)

In particular, GC is universally used for languages with closures and
complex data structures that are implicitly heap-allocated.

We view GC as part of an allocation service provided by the runtime
environment to the user program, usually called the mutator. When the
mutator needs heap space, it calls an allocation routine, which in turn
performs garbage collection activities if needed.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 2

SIMPLE MODEL: HEAP OF “CONS” CELLS

Simple heap model

For simplicity, consider a simple heap of “cons cells:”

two-field records, both fields are pointers to other records.

HEAPSTACK

GLOBALS

7PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 3

GC MODEL

Assume heap consists of two-word cells and each element of a cell is a
pointer to another cell. (We’ll deal with arbitrary size objects and
distinguishing pointers from non-pointers later.)

There may also be pointers into the heap from the stack and global
variables; these constitute the root set.

At any given moment, the system’s live data are the heap cells that can
be reached by some series of pointer traversals starting from a member
of the root set.

Garbage is the heap memory containing non-live cells. (Note that this is
a slightly conservative definition.)

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 4

REFERENCE COUNTING

The most straightforward way to recognize garbage and make its space
reusable for new cells is to use reference counts.

We augment each heap cell with a count field that records the total
number of pointers in the system that point to the cell. Each time we
create or copy a pointer to the cell, we increment the count; each time we
destroy a pointer, we decrement the count.

If the reference count ever goes to 0, we can reuse the cell by placing it
on a free list.

FREE

LIST

To allocate a new cell, we take the head of the free list.

Pros: conceptually simple; immediate reclamation of storage

Cons: extra space; extra time (every pointer assignment has to
change/check count); can’t collect “cyclic garbage”

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 5

MARK AND SWEEP

There’s no real need to remove garbage as long as unused memory is
available. So GC is typically deferred until the allocator fails due to lack
of memory. The collector then takes control of the processor, performs a
collection—hopefully freeing enough memory to satisfy the allocation
request—and returns control to the mutator. This approach is known
generically as “stop and collect.”

There are several options for the collection algorithm. Perhaps the
simplest is called mark and sweep, which operates in two phases:

• First, mark each live data cell by tracing all pointers starting with the
root set.

• Then, sweep all unmarked cells onto the free list (also unmarking the
marked cells).

Code follows...

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 6

struct cell {

int mark:1;

struct cell *c[2];}

struct cell *free;

struct cell heap[HEAPSIZE];

struct cell *roots[ROOTS];

/* Initially all cells are on free list (linked using c[0]). */

void init_heap() {

for (i=0; i < HEAPSIZE-1; i++)

heap[i].c[0] = &(heap[i+1]);

heap[HEAPSIZE-1].c[0] = 0;

free = &(heap[0]);

}

struct cell *allocate() {

struct cell *a;

if (!free) { /* no more room => */

gc(); /* try gc */

if (!free) /* still no more room */

die();

};

a = free;

free = free->c[0];

return a;

}

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 7

void gc() {

for (i = 0; i < ROOTS; i++)

mark(roots[i]);

sweep();

}

void mark(struct cell *cell) {

if (!cell->mark) {

cell->mark = 1;

mark(cell->c[0]);

mark(cell->c[1]);

}

}

void sweep() {

for (i = 0; i < HEAPSIZE; i++)

if (heap[i].mark)

heap[i].mark = 0;

else {

heap[i].c[0] = free;

free = &(heap[i]);

}

}

Here mark traverses the live data graph in depth-first order, and
potentially uses lots of stack! A standard trick called pointer reversal
avoids this.
PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 8

COPYING COLLECTION

Mark and sweep has several problems:

• It does work proportional to the size of the entire heap.

• It leaves memory fragmented.

• It doesn’t cope well with non-uniform cell sizes.

An alternative that solves these problems is copying collection. The
idea is to divide the available heap into 2 semi-spaces. Initially, the
allocator uses just one space; when it fills up, the collector copies the
live data (only) into the other space, and reverses the role of the spaces.

Copying compacts live data, which improves locality and may be good
for virtual memory and caches.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 9

ALLOCATION SPACERESERVE SPACE

ALLOCATION SPACE RESERVE SPACE

DATA

DATA & GARBAGE

DATA

START OF CYCLE:

BEFORE COLLECTION:

AFTER COLLECTION:

ALLOCATION SPACE RESERVE SPACE

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 10

MAINTAINING THE GRAPH OF LIVE DATA

Copying collection must fix up all pointers to copied data. To do this, it
leaves a forwarding pointer in the “from” space after the copy is made.
Copying (cont’d)

FROM SPACE TO SPACEROOT SET

FROM SPACE TO SPACEROOT SET

BEFORE COLLECTION

AFTER COLLECTION

19

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 11

COPYING COLLECTION DETAILS

A copying collector typically traverses the live data graph breadth first,
using “to” space itself as the search “queue.”

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

FS

S F

FS

F

F

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S
A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S

TO-SPACE

GRAPH

Root
Set

B

E
A

DC

FS

S = scan pointer F = free pointer

= copied but not scanned

= copied and scanned
(all pointers are to
 to-space)

F

S

Code follows...

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 12

struct cell {

struct cell *c[2];

}

struct cell space[2][HALFSIZE];

struct cell *roots[ROOTS];

struct cell *free = &(space[0][0]);

struct cell *end = &(space[0][HALFSIZE]);

int from_space = 0;

int to_space = 1;

struct cell *allocate() {

if (free == end) { /* no room */

gc();

if (free == end) /* still no room */

die();

};

return free++;

}

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 13

gc() {

int i;

struct cell *scan = &(space[to_space][0]);

free = scan;

for (i = 0 ; i < ROOTS; i++)

roots[i] = forward(roots[i]);

while (scan < free) {

scan->c[0] = forward(scan->c[0]);

scan->c[1] = forward(scan->c[1]);

scan++;

};

from_space = 1-from_space;

to_space = 1-to_space;

end = *(space[from_space][HALFSIZE]);

}

struct cell *forward(struct cell *p) {

if (p->c[0] >= &(space[to_space][0]) &&

p->c[0] < &(space[to_space][HALFSIZE]))

return p->c[0];

else {

*free = *p;

p->c[0] = free++;

return p->c[0];

}

}

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 14

COMPARISON

Copying collector does work proportional to amount of live data.
Asymptotically, this means it does less work than mark and sweep. Let

A = amount of live data
M = total memory size before a collection.

After the collection, there is M-A space left for allocation before the next
collection. We can calculate the amortized cost per allocated byte as
follows:

CM&S = c1A+c2M
M−A for some c1, c2

CCOPY = c3A
M
2 −A

for some c3

As M →∞, CCOPY → 0, while CM&S → c2.

Of course, real memories aren’t infinite, so the values of c1, c2, c3 matter,
especially if a significant percentage of data are live at collection (since
generally c3 > c1).

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 15

CONSERVATIVE COLLECTION

Standard GC algorithms rely on precise identification of pointers.

This is hard in “uncooperative” environments, i.e., when the mutator (and
its compiler) are not aware that GC will be performed. This is the normal
case for C/C++ programs.

Basic problem: the mutator and collector can no longer communicate a
root set.

Idea: for any scanning collector to be correct, it’s essential that every
pointer be found. But for non-moving collectors, it’s ok to mistake a
non-pointer for a pointer – the worst that happens is that some garbage
doesn’t get collected.

Conservative collectors scan the entire register set and stack of the
mutator, and assume that anything that might be a pointer really is a
pointer.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 16

ISSUES IN CONSERVATIVE COLLECTION

• Some bit patterns that are actually integers, reals, chars, etc. will be
mistaken for pointers, so the “objects” they “point” to will be treated as
live data, causing space leaks.

• Accidental pointer identifications can be greatly decreased by careful
tests, e.g., must be on a page known to be in the heap, at an appropriate
alignment for objects on that page; data at “pointed-to” location must look
like a heap header.

• Can further reduce false id’s by not allocating on pages whose
addresses correspond to data values known to be in use.

• Because they must filter large numbers of potential roots, conservative
collectors tend to be slow.

• Collector must still be able to find all potential roots in registers and
stack frames.

• Pointers must not be kept in “hidden” form by mutator code that does
weird pointer arithmetic.

See the well-known Boehm-Demers-Weiser collector.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 17

OBJECT LIFETIMES

Major problem with tracing GC: long-lived data get traced (scanned
and/or copied) repeatedly, without producing free space.

(Weak) Generational Hypothesis: “Most data die young.”

I.e., most objects become garbage a short time after they are allocated.

If we equate “age” of an object O is equated with amount of heap
allocated since O was allocated, this says that most objects become
garbage after a small number of other objects have been allocated.

Moreover, the longer an object stays live, the more likely it is to remain
live in the future.

These are empirical properties of many (not necessarily all)
languages/programs.

Implication : if you’re looking for garbage, it’s more likely to be found in
recently-allocated data, e.g., in data allocated since the last garbage
collection.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 18

GENERATIONAL COLLECTION

Idea: Segregate data by age into generations.

• Arrange that the younger generations can be collected independently of
the older ones.

•When space is needed, collect the youngest generation first.

• Only collect older generation(s) if space is still needed.

• Should make GC more efficient overall, since less total tracing is
performed.

• Should shorten pause times (at least for young generation GCs).

Some variant of generational collection is almost universally used in
serious implementations of heavily-allocating languages.

Most generational systems are copying collectors, although mark and
sweep variants are possible.

In generational copying collector, data in generation n that are still live
after a certain number of gc’s (the promotion threshold) are copied into
generation n+ 1 (possibly triggering a collection there).

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 19

GENERATIONAL EXAMPLE

Key problem: finding all the roots that point into generation n without
scanning higher generations.

Assume 2 generations, promotion threshold = 1. Initial memory
configuration after allocation of R:

S

OLD GENERATION

B

A

Q

PR

0 0

NEW GENERATION ROOTS

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 20

Suppose a GC is now needed:

S

R

A

B

00

ROOTSNEW GENERATIONOLD GENERATION

Note that S is now tenured (uncollected garbage).

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 21

Now suppose we allocate a new cell T pointed to by R, fill T with pointers
to A and B, and zero the root set pointers to A and B.

S

R

A

B

T

0

OLD GENERATION NEW GENERATION

0

0

ROOTS

If a further GC is needed, we must follow the inter-generational pointer
from R to T.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 22

DESIGN ISSUES

Tracking pointers from older generations to younger ones is primary
added cost of generational system.

• Can only happen via update of a pointer in an older generation.

• Typically use a write barrier to catch such updates.

• Maintain remembered set of updated memory chunks (“cards”), where
chunk size can range from single address to entire page.

• Different tradeoffs in mutator overhead vs. scan time.

Promotion policy?

• Threshold = 1 gives simpler implementation, since no need to record
object age, but promotes very young objects.

How many generations?

• Two-generation systems give simpler implementation, but > 2

generations are useful if there is a spread of object lifetimes (especially if
threshold = 1). May want separate areas for large, pointer-free, or
“immortal” objects.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 23

INCREMENTAL/CONCURRENT COLLECTORS

Stop-and-copy collectors suffer from arbitrarily long pauses during
collection, which is bad for interactive applications.

Incremental collectors attempt to solve this problem by doing the
collection in small pieces, no one of which takes too long. Typically do
some collection work at the time of each allocation. E.g., every time a cell
is allocated, collector traces k cells (for some k > A

M−A). Note:
incremental 6= real-time.

Because collector and mutator are interleaved at fine granularity, they
must synchronize their activities. Useful to view collector and mutator as
concurrent threads. In fact, can usually make incremental GC algorithms
run on a multiprocessor, with one or more threads devoted to doing GC.

(Reference counting is essentially a concurrent GC approach.)

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 24

CHALLENGES OF CONCURRENCY

Key problem: mutator can change set of live cells “under the feet” of the
collector. Example:

Mutator Collector

q = new

r = new

p = q

trace p; mark q live

p = r

trace q... (ignore r)

Essential not to treat live data as garbage. Desirable not to treat
garbage as live data.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 25

TRICOLOR INVARIANT

To describe essential invariant for concurrent marking, think of each heap
cell as having one of three colors:

Black - node and its immediate children have been visited already.

Grey - node has been visited, but its children might not have been, so
collector must revisit this node.

White - node has not been visited yet.

Initially, all nodes are white. A scan cycle terminates when all reachable
nodes are black and there are no grey nodes; at this point, all remaining
white nodes are garbage.

Example: In copying collector, old-space nodes are white, new-space
nodes are grey until scanned, after which they become black.

Key idea: To maintain correctness of scan, mutatator must never write a
pointer directly from a black node to a white node.

Many different ways to enforce this invariant.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 26

BAKER’S ALGORITHM (INCREMENTAL COPYING COLLECTOR)

Idea: Never let the mutator “see” a white node (i.e., an old-space
pointer). That way, mutator can never write such a pointer into a black
node (i.e., a new-space node).

Implementation requires a read barrier that traps attempts to load from
old-space cells, and moves them to new-space “on the fly.”

Original mutator code:

x = p->c[1];

New mutator code after insertion of read barrier:

x = (forward(p))->c[1];

Also arranges to allocate new cells in new-space, beyond scan boundary
(i.e., colored black); this is quite conservative, but safe and simple.

Read barrier makes this algorithm very expensive in the absence of
hardware support. One possible variant: use memory management
hardware to implement read barrier at page level.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 27

DIJKSTRA’S ALGORITHM (INCREMENTAL MARK-SWEEP COLLECTOR)

In a M&S collector, often use an explicit mark stack to record nodes that
have been marked but whose children have not been:

struct cell *markstack[];

int msp = 0;

void gc () {

for (int i = 0; i < ROOTS; i++) {

roots[i]->mark = 1;

markstack[msp++] = roots[i];

}

while (struct cell *cell = markstack[--msp])

for (int child = 0; child <= 1; child++)

if (!cell->c[child]->mark) {

cell->c[child]->mark = 1;

markstack[msp++] = cell->c[child];

}

sweep();

}

In this context, unmarked cells are white, marked cells that are on the
markstack are grey, and other marked cells are black.

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 28

INCREMENTAL MARK-SWEEP (CONT.)

The most direct way to prevent a black-to-white pointer from being written
is to use a write barrier to detect such writes, and change the target
object’s color to grey “on the fly.”

Original mutator code:

*p = q;

Mutator code with write barrier:

*p = q;

if (!q->mark) {

q->mark = 1;

markstack[msp++] = q;

}

PSU CS410P/510 WINTER’24 LECTURE ON GARBAGE COLLECTION © 1992–2024 ANDREW TOLMACH 29

