
Notes on Dataflow Analysis

Andrew Tolmach

February 8, 2024

1 Dataflow Analysis and Lattices

The general framework of a dataflow analysis problem can be set up as follows. Suppose we have
a program and its control-flow graph (CFG). The nodes of the CFG can be individual instructions
or basic blocks (straight-line sequences of instructions); it doesn’t much matter. Our goal is to
calculate some information I about the program state immediately before and after execution of
the code associated with each CFG node; that is, we want compute Iin[i] and Iout[i] for each node
i. For liveness analysis, I is the set of variables live at the specified point; for constant analysis, I
might be a map from variable names to values; more on this in later sections. Our plan is to do
this calculation gradually, by repeatedly refining an approximation to the correct information. At
any given point in the calculation, the set I might be such an approximation; eventually, we want
it to converge to the true value.

The nice thing is that the dataflow framework doesn’t care what the type I is, as long as values of
this type form a lattice (or more precisely, a join semi-lattice). Rather than recapitulate the generic
formal definition of a lattice (Wikipedia is your friend!), I’ll just describe the requirements we’ll
put on I in the context of dataflow analysis, where it is useful to think in terms of the “information
content” of each value of I.

• We must define a partial order ⊑ on the elements of I, where x ⊑ y means “x is no better
defined than y” or “y is at least as good an approximation as x.”

• There is a “bottom” element in I, written ⊥, such that ⊥ ⊑ x for every element x ∈ I. ⊥
represents having no information at all. We’ll typically start the analysis assuming that Iin
and Iout are ⊥ at most or all nodes.

• For any two elements x, y ∈ S, the least upper bound of x and y with respect to ⊑ exists and
is in S. We call this the join of x and y, written x⊔ y, and it represents the result of merging
the information in x and y, as we will need to do at “join points” in the CFG. (The fact that
we model “join points” with lattice “joins” is mostly just a happy coincidence.)

We also define a transfer function tr : i × I → I that describes how executing the code at a node
changes the information we know. The transfer function together with the join operator describe
how to perform a single round of improvement in the approximation we’re computing. Exactly how
this works depends on the direction of the dataflow analysis. In a forward analysis, the transfer
function computes Iout[i] from Iin[i], and the framework compute Iin[i] as the join of Iout[j] for all
predecessors j of i. In a backward analysis, the transfer function computes Iin[i] from Iout[i], and

1



the framework compute Iout[i] as the join of Iin[k] for all successors k of i. (Liveness is a backward
analysis, as you know.) Unsurprisingly, a backward analysis is just the same as a forward analysis
on the transpose of the CFG, so the same algorithm will do for both.

So a single round in the approximation process consists of performing a suitable join and then
applying tr at every node. We can view the effect of this as a function f that tranforms one
approximation (a complete collection of, say, Iout sets for each node) to a new approximation
(another complete collection of Iout sets for each node). To be a little more precise, we can think
of f as a function of type M → M , where M is the mapping from i to Iout[i]. It turns out that we
can make M into a lattice as well, by defining:

• m1 ⊑ m2 iff mi[i] ⊑ m2[i] for all i

• ⊥M [i] = ⊥ for all i

• (m1 ⊔m2)[i] = m1[i] ⊔m2[i] for all i

How will we know when we have performed enough iterations? Answer: when applying f ceases
to change the mapping. In other words, a solution ms of our problem is one that is a fixed
point of f , i.e. f(ms) = ms. For problems (including liveness) where we are creating under-
approximations, we want the least fixed point, i.e. a fixed point in which the I sets have only the
elements they absolutely must, and no extraneous junk. It turns out that some general theory
on lattices (the “Kleene fixed-point theorem”) says that, under some suitable restrictions on f (it
must be “monotone”) and the lattice (it must have no “infinite ascending chains”), such a fixed
point will always be reached by repeatedly applying f to ⊥M .

Fig. 6.5 of the book gives an efficient iterative algorithm for solving an arbitrary dataflow problem
posed in this framework, by iterating f in this way. Rather than completely recomputing the
information sets on each approximation round, it uses a worklist to focus only those nodes whose
inputs have changed, but the result is the same. Essentially the same code is available to you as
function analyze dataflow in the file dataflow analysis.py. To use this code, you just need to
define functions for tr and ⊔ and give the value of ⊥.

2 Liveness Analysis as an instance of Dataflow Analysis

Let’s see how the general dataflow analysis framework can be instantiated to do liveness analysis.

Here the information I = LIVE we’re computing at each node is a set of live variables, so we want
to define a lattice whose elements are such sets. This is easy: we take ⊑ to be ordinary set ⊆, ⊥
to be the empty set (∅), and ⊔ to be set union (∪). (In principle, we need to check that set union
really does compute least upper bounds with respect to inclusion, but this is fairly trivial to see.)

We want this to be a backward analysis, and so the transfer function should compute LIVE in[i]
from LIVE out[i]. So we just plug in the equations we already developed for liveness:

tr(L) = (L− write[i]) ∪ read [i]

and the framework takes care of calculating LIVE out[i] from the LIVE in sets of the sucesssors of i
using ⊔ = ∪.
Now we just apply the analyze dataflow function to this choice of tr, ⊥, and ⊔. (And note that
tr for basic blocks is already implemented as calc liveness.) That’s all there is to it!

2



Well, almost. As described here, you might think that tr is a pure function, with no side-effects. And
indeed this works as far as computing a solution goes. But the analyze dataflow function doesn’t
return anything! So if we want to actually record the solution (and of course we do!) that needs
to be done as a side-effect within the tr function. This is conveniently done by making tr a nested
local function which can access the program’s blocks and update a solution map defined in an outer
function. Also, you’ll want to have some special-case code in tr to handle the Label("conclusion")
node, which doesn’t have defining block.

3 Constant Propagation as an Instance of Dataflow Analysis

As another application of dataflow analysis, consider the problem of computing, at each program
instruction, a “known constant” map K : Var → Val from variables x ∈ Var to their known
(integer) values v ∈ Val . Of course, in general we don’t know the value of a variable at compile time,
but we do know it when the variable has been assigned to a literal constant and not subsequently
re-assigned. (We could also extend this to the case when the variable is assigned to an expression
whose own variables all have known values, but for simplicity we’ll ignore this extension here.) As
usual, the main difficulty comes from join points in the control flow, where the known values on
the incoming branches may be different. Also, at the start of execution, the value of every variable
is undefined. To handle these issues, we define the codomain Val of the known constant map to be
Z∪{⊥,⊤}, where Z is the set of integers, ⊥ is a special value meaning “unknown’, and ⊤ is a new
special value meaning “not a constant.” We can visualize the lattice like this:

0 1 2 3 . . .. . . -3 -2 -1

⊥= Unknown

⊤ = Not constant

Figure 1 contains an example showing how the map evolves over a simple program. Note that
the map can mostly be computed in a single forward pass, but, as usual, the presence of a loop
(the backward jump to L3) means that we must be a little cleverer; hence the need for employing
dataflow analysis, in this case a forward analysis.

To fit this problem into the dataflow framework, we take I = K = Var → Val . We need to define
a lattice on K. First we define the ⊑ relation on Val :

• v ⊑ v for all values v (including integers i, ⊥, and ⊤)

• ⊥ ⊑ i ⊑ ⊤ for all integers i

and a corresponding join relation ⊔:

• v ⊔ v = v for all values v (including integers i, ⊥, and ⊤)

3



{ x:⊥, y:⊥, z:⊥ }

x = 1

{ x:1, y:⊥, z:⊥ }

y = 2

{ x:1, y:2, z:⊥ }

if ... goto L1

{ x:1, y:2, z:⊥ }

y = 4

{ x:1, y:4, z:⊥ }

z = 3

{ x:1, y:4, z:3 }

goto L2

L1: { x:1, y:2, z:⊥ }

z = 3

{ x:1, y:2, z:3 }

goto L2

L2: { x:1, y:⊤, z:3 } # note y was changed in one branch;

goto L3 # z was updated to the same thing in both branches

L3: { x:⊤, y:⊤, z:3 } # note x is updated in the loop

if ... goto L4

y = 2

{ x:⊤, y:2, z:3 }

x = x + 1

{ x:⊤, y:2, z:3 }

goto L3

L4: { x:⊤, y:⊤, z:3 }

Figure 1: Example of constant propagation

4



• i ⊔ j = ⊤ for all integers i ̸= j

• i ⊔ ⊥ = ⊥ ⊔ i = i for all integers i

• v ⊔ ⊤ = ⊤ ⊔ v = ⊤ for all values v (including integers i and ⊥)

Now we can define a lattice structure on the maps k ∈ K as follows.

• k1 ⊑ k2 iff k1(x) ⊆ k2(x) for all x ∈ Var

• (k1 ⊔ k2)(x) = k1(x) ⊔ k2(x) for all x ∈ Var

• ⊥(x) = ⊥ for all x ∈ V ar

Since this is a forward analysis, the transfer function for instruction instr must compute the post-
instruction map Kout[instr ] from the pre-instruction map Kin[instr ]. It can be given as

tr(k)(x) =

if instr = ‘‘x = i’’ then i (where i is an integer literal)

else if instr = ‘‘x = ...’’ then ⊤
else k(x)

Similarly to before, the framework takes care of calculating Kin[instr ] from the Kout sets of the
predecessors of instr using our definition of ⊔. At join points, this has the effect of forcing the value
associated with any variable x to be ⊤ unless it has the same (known) value on each incoming CFG
edge. Again, we just need to apply the analyze dataflow function with this choice of tr, ⊥, and
⊔ in order to compute the Kin sets at each instruction.

5


