
8 Functions

Specialized version of this chapter for use at PSU, Winter 2024.
This chapter studies the compilation of a subset of Python in which only top-level

function definitions are allowed. This kind of function appears in the C programming
language, and it serves as an important stepping-stone to implementing lexically
scoped functions in the form of lambda abstractions, which is the topic of chapter 9.

8.1 The LFun Language

The concrete syntax and abstract syntax for function definitions and function appli-
cation are shown in figures 8.1 and 8.2, with which we define the LFun language.
Programs in LFun begin with zero or more function definitions. The function names
from these definitions are in scope for the entire program, including all the function
definitions, and therefore the ordering of function definitions does not matter. The
abstract syntax for function parameters in figure 8.2 is a list of pairs, each of which
consists of a parameter name and its type. This design di�ers from Python’s ast

module, which has a more complex structure for function parameters to handle
keyword parameters, defaults, and so on. The type checker in type_check_Lfun

converts the complex Python abstract syntax into the simpler syntax shown in
figure 8.2. The fourth and sixth parameters of the FunctionDef constructor are
for decorators and a type comment, neither of which are used by our compiler. We
recommend replacing them with None in the shrink pass. The concrete syntax for
function application is exp(exp, …), where the first expression must evaluate to a
function and the remaining expressions are the arguments. The abstract syntax for
function application is Call(exp, exp

ú
).

Functions are first-class in the sense that a function pointer is data and can be
stored in memory or passed as a parameter to another function. Thus, there is a
function type, written

Callable[[type
1
,· · · ,type

n
], type

R
]

for a function whose n parameters have the types type
1

through type
n

and whose
return type is type

R
. The main limitation of these functions (with respect to Python

functions) is that they are not lexically scoped. That is, the only external entities

122 Chapter 8

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)

stmt ::= print(exp) | exp

exp ::= var

stmt ::= var = exp

cmp ::= == | != | < | <= | > | >=

exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp

stmt ::= if exp: stmt
+

else: stmt
+

stmt ::= while exp: stmt
+

cmp ::= is

exp ::= exp, … ,exp | () | exp[int]

stmt ::= exp[int] = exp

type ::= int | bool | tuple[type, …] | Callable[[type, …], rtype]

rtype ::= type | None

exp ::= exp(exp, …)

stmt ::= return exp | return

def ::= def var(var:type, …) -> rtype: stmt
+

LFun ::= def … stmt …

Figure 8.1
The concrete syntax of LFun, extending LTup (figure 7.1).

that can be referenced from inside a function body are other globally defined func-
tions. The syntax of LFun prevents function definitions from being nested inside
each other.

The program shown in figure 8.3 is a representative example of defining and using
functions in LFun. We define a function map that applies some other function f to
both elements of a tuple and returns a new tuple containing the results. We also
define a function inc. The program applies map to inc and (0, 41). The result is
(1, 42), from which we return 42.

An LFun function designed to be executed for its side-e�ects need not return a
value. This is specified in the function’s type by giving a return type of None and
in the function’s code by using a return statement without an expression, or by
“falling o� the end” of the function without executing an explicit return statement
at all. In the abstract syntax, the None type is represented by the VoidType()

constructor; the name “void” is taken from C-like languages. There are no values
of type void. If a function f has void return type, calls to f are not permitted
in contexts that expect a value; in particular the results of such calls cannot be
assigned to variables, passed as arguments to other functions, or used as explicit
return values in return statements. In e�ect, such functions calls can only be used
as expressions that appear in statement context. On the other hand, it is legal to
use a function that returns a non-void value in a statement context; the returned
value is just ignored.

The definitional interpreter for LFun is shown in figure 8.4. The case for the
Module AST is responsible for setting up the mutual recursion between the top-level

Functions 123

exp ::= Constant(int) | Call(Name(�input_int�),[])

| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)

| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name(�print�),[exp])) | Expr(exp)

exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)

boolop ::= And() | Or()

cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()

bool ::= True | False

exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])

| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt
+
, stmt

+
)

stmt ::= While(exp, stmt
+
, [])

cmp ::= Is()

exp ::= Tuple(exp
ú
,Load()) | Subscript(exp,Constant(int),Load())

stmt ::= Assign([Subscript(exp,Constant(int),Store())], exp)

type ::= IntType() | BoolType() | TupleType(type
ú
)

| FuncType(type
ú
, rtype)

rtype ::= type | VoidType()

exp ::= Call(exp, exp
ú
)

stmt ::= Return(exp) | Return(None)

params ::= (var,type)
ú

def ::= FunctionDef(var, params, stmt
+
, None, rtype, None)

LFun ::= Module([def … stmt …])

Figure 8.2
The abstract syntax of LFun, extending LTup (figure 7.2).

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:

return f(v[0]), f(v[1])

def inc(x : int) -> int:

return x + 1

print(map(inc, (0, 41))[1])

Figure 8.3
Example of using functions in LFun.

function definitions. We create a dictionary named env and fill it in by mapping
each function name to a new Function value, each of which stores a reference to the
env. (We define the class Function for this purpose.) To interpret a function call,
we match the result of the function expression to obtain a function value. We then

124 Chapter 8

extend the function’s environment with the mapping of parameters to argument
values. Finally, we interpret the body of the function in this extended environment.

The type checker for LFun is shown in figure 8.5 can be found in on-line materials.
(We omit the code that parses function parameters into the simpler abstract syntax.)
Similarly to the interpreter, the case for the Module AST is responsible for setting
up the mutual recursion between the top-level function definitions. We begin by cre-
ating a mapping env from every function name to its type. We then type check the
program using this mapping. To check a function definition, we copy and extend the
env with the parameters of the function. We then type check the body of the func-
tion and obtain the actual return type rt, which is either the type of the expression
in a return statement or the VoidType if the return statement carries no expres-
sion or if control reaches the end of the function without a return statement. (If
there are multiple return statements, the types of their expressions must agree.)
Finally, we check that the actual return type rt is equal to the declared return type
returns. To check a function call, we match the type of the function expression to
a function type and check that the types of the argument expressions are equal to
the function’s parameter types. The type of the call as a whole is the return type
from the function type.

Functions 125

class InterpLfun(InterpLtup):

def apply_fun(self, fun, args, e):

match fun:

case Function(name, xs, body, env):

new_env = env.copy().update(zip(xs, args))

return self.interp_stmts(body, new_env)

case _:

raise Exception(�apply_fun: unexpected: � + repr(fun))

def interp_exp(self, e, env):

match e:

case Call(Name(�input_int�), []):

return super().interp_exp(e, env)

case Call(func, args):

f = self.interp_exp(func, env)

vs = [self.interp_exp(arg, env) for arg in args]

return self.apply_fun(f, vs, e)

case _:

return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):

match s:

case Return(value):

return self.interp_exp(value, env)

case FunctionDef(name, params, bod, dl, returns, comment):

if isinstance(params, ast.arguments):

ps = [p.arg for p in params.args]

else:

ps = [x for (x,t) in params]

env[name] = Function(name, ps, bod, env)

return self.interp_stmts(cont, env)

case _:

return super().interp_stmt(s, env, cont)

def interp(self, p):

match p:

case Module(ss):

env = {}

self.interp_stmts(ss, env)

if �main� in env.keys():

self.apply_fun(env[�main�], [], None)

case _:

raise Exception(�interp: unexpected � + repr(p))

Figure 8.4
Interpreter for the LFun language.

Figure 8.5
Type checker for the LFun language. Omitted: See actual file for our slightly di�erent version.

126 Chapter 8

8.2 Functions in x86

The x86 architecture provides a few features to support the implementation of
functions. We have already seen that there are labels in x86 so that one can refer
to the location of an instruction, as is needed for jump instructions. Labels can also
be used to mark the beginning of the instructions for a function. Going further, we
can obtain the address of a label by using the leaq instruction. For example, the
following puts the address of the inc label into the rbx register:

leaq inc(%rip), %rbx

Recall from section 7.6 that inc(%rip) is an example of instruction-pointer-relative
addressing.

In section 2.2 we used the callq instruction to jump to functions whose loca-
tions were given by a label, such as read_int. This will continue to work in this
chapter when we call a function directly by its name (such as map in the example
of figure 8.3). But to support first-class functions (such as inc in the same figure),
we need to be able to enter a function by jumping to an address held in a register;
that is, we use indirect function calls. The x86 syntax for this is a callq instruction
that requires an asterisk before the register name.

callq *%rbx

8.2.1 Calling Conventions
The callq instruction provides partial support for implementing functions: it
pushes the return address on the stack and it jumps to the target. However, callq

does not handle

1. parameter passing,
2. pushing frames on the procedure call stack and popping them o�, or
3. determining how registers are shared by di�erent functions.

Regarding parameter passing, recall that the x86-64 calling convention for Unix-
based systems uses the following six registers to pass arguments to a function, in
the given order:

rdi rsi rdx rcx r8 r9

If there are more than six arguments, then the calling convention mandates using
space on the frame of the caller for the rest of the arguments. Specifically, the
caller should arrange for argument 7 to be placed on the stack immediately above
where the return address will go during the call, argument 8 immediately above
that, and so on. The return value of the function is stored in register rax.

Regarding frames and the procedure call stack, recall from section 2.2 that the
stack grows down and each function call uses a chunk of space on the stack called
a frame. The caller sets the stack pointer, register rsp, to the last data item in its
frame. The callee must not change anything in the caller’s frame, that is, anything

Functions 127

that is at or above the stack pointer. The callee is free to use locations that are
below the stack pointer.

Recall that we store variables of tuple type on the root stack. So, the prelude of
a function needs to move the root stack pointer r15 up according to the number
of variables of tuple type and the conclusion needs to move the root stack pointer
back down. Also, the prelude must initialize to 0 this frame’s slots in the root stack
to signal to the garbage collector that those slots do not yet contain a valid pointer.
Otherwise the garbage collector will interpret the garbage bits in those slots as
memory addresses and try to traverse them, causing serious mayhem!

Regarding the sharing of registers between di�erent functions, recall from
section 4.1 that the registers are divided into two groups, the caller-saved registers
and the callee-saved registers. The caller should assume that all the caller-saved
registers are overwritten with arbitrary values by the callee. For that reason we
recommend in section 4.1 that variables that are live during a function call should
not be assigned to caller-saved registers.

On the flip side, if the callee wants to use a callee-saved register, the callee must
save the contents of those registers on their stack frame and then put them back
prior to returning to the caller. For that reason we recommend in section 4.1 that if
the register allocator assigns a variable to a callee-saved register, then the prelude
of the main function must save that register to the stack and the conclusion of main

must restore it. This recommendation now generalizes to all functions.
Recall that the base pointer, register rbp, is used as a point of reference within a

frame, so that each local variable can be accessed at a fixed (negative) o�set from
the base pointer (section 2.2). Furthermore, if more than six arguments are passed,
the seventh and succeeding ones can also be accessed at fixed (positive) o�sets from
the base pointer. Figure 8.6 shows the layout of the caller and callee frames.

8.2.2 E�cient Tail Calls
8.3 Shrink LFun

The shrink pass performs a minor modification to ease the later passes. This pass
introduces an explicit main function that gobbles up all the top-level statements of
the module.

Module(def … stmt …)

∆ Module(def … mainDef)

where mainDef is

FunctionDef(�main�, [], stmt … Return(Constant(0)), None, IntType(), None)

Shrink must also be extended to handle expressions in return statements.

8.4 Reveal Functions and the LFunRef Language

The syntax of LFun is inconvenient for purposes of compilation in that it conflates
the use of function names and local variables. This is a problem because we need

128 Chapter 8

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp

-8(%rbp) callee-saved 1

… …
–8j(%rbp) callee-saved j

–8(j + 1)(%rbp) local variable 1

… …
–8(j + k)(%rbp) local variable k

8n – 8(%rsp) 8n + 8(%rbp) argument 6 + n

… …
0(%rsp) 16(%rbp) argument 7

8(%rbp) return address

Callee
0(%rbp) old rbp

-8(%rbp) callee-saved 1

… …
–8n(%rbp) callee-saved n

–8(n + 1)(%rbp) local variable 1

… …
–8(n + m)(%rbp) local variable m

Figure 8.6
Memory layout of caller and callee frames, where %rsp is the stack pointer just before the call is
performed.

to compile the use of a function name di�erently from the use of a local variable.
In particular, we use leaq to convert the function name (a label in x86) to an
address in a register. Thus, we create a new pass that changes function references
from Name(f) to FunRef(f). This pass is named reveal_functions and the output
language is LFunRef.

The reveal_functions pass should come before the remove_complex_operands

pass because function references should be categorized as complex expressions.

8.5 Limit Functions

8.6 Remove Complex Operands

The primary decisions to make for this pass are whether to classify FunRef and Call

as either atomic or complex expressions. Recall that an atomic expression ends up
as an immediate argument of an x86 instruction. Function application translates
to a sequence of instructions, so Call must be classified as a complex expression.
On the other hand, the arguments of Call should be atomic expressions. So should
the argument of a Return. Regarding FunRef, as discussed previously, the function

Functions 129

atm ::= Constant(int) | Name(var)

exp ::= atm | Call(Name(�input_int�),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)

| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name(�print�),[atm])) | Expr(exp)

| Assign([Name(var)], exp)

atm ::= Constant(bool)

exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt
ú
, exp)

stmt ::= If(exp, stmt
ú
, stmt

ú
)

stmt ::= While(exp, stmt
+
, [])

atm ::= GlobalValue(var)

exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

stmt ::= Assign([Subscript(atm,atm,Store())], atm)

| Collect(int)

type ::= IntType() | BoolType()

| TupleType(type
ú
) | FuncType(type

ú
, type)

rtype ::= type | VoidType()

exp ::= FunRef(label) | Call(atm, atm
ú
) | Call(FunRef(label), atm

ú
)

stmt ::= Return(exp) | Return(None)

params ::= (var,type)
ú

def ::= FunctionDef(var, params, stmt
+
, None, rtype, None)

Lmon

FunRef
::= Module([def … stmt …])

Figure 8.7
Lmon

FunRef
is LFunRef in monadic normal form.

label needs to be converted to an address using the leaq instruction. Thus, even
though FunRef seems rather simple, it needs to be classified as a complex expression
so that we generate an assignment statement with a left-hand side that can serve
as the target of the leaq.

The output of this pass, Lmon

FunRef
(figure 8.7), extends Lmon

Alloc
(figure 7.11) with

FunRef and Call in the grammar for expressions and augments programs to
include a list of function definitions. Also, Lmon

FunRef
adds Return to the grammar

for statements.

8.7 Explicate Control and the CFun Language

Figure 8.8 defines the abstract syntax for CFun, the output of explicate_control.
The auxiliary functions for assignment should be updated with cases for Call

and FunRef and the function for predicate context should be updated for
Call but not FunRef. (A FunRef cannot be a Boolean.) The code for han-
dling statements needs to be extended to handle returns. Also, function
bodies that “fall o� the end” should acquire a terminating Return(None).
In assignment and predicate contexts, Call remains Call, whereas in tail position Call becomes TailCall.
We recommend defining a new auxiliary function for processing function def-
initions. This code is similar to the case for Program in LTup. The top-level
explicate_control function that handles the ProgramDefs form of LFun can then
apply this new function to all the function definitions.

130 Chapter 8

atm ::= Constant(int) | Name(var) | Constant(bool)

exp ::= atm | Call(Name(�input_int�),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)

| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name(�print�),[atm])) | Expr(exp)

| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)

| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)

exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)

exp ::= FunRef(label) | Call(atm, atm
ú
) | Call(FunRef(label), atm

ú
)

tail ::= Return(None)

params ::= [(var,type), …]

block ::= label:stmt
ú

tail

def ::= FunctionDef(label, params, {block, … }, None, rtype, None)

CFun ::= CProgramDefs([def , …])

Figure 8.8
The abstract syntax of CFun, extending CTup (figure 7.12).

The translation of Return statements requires a new auxiliary function to handle expressions in tail context, called explicate_tail. The function should take an expression and the dictionary of basic blocks and produce a list of statements in the CFun language. The explicate_tail function should include cases for Begin, IfExp, and Call, and a default case for other kinds of expressions. The default case should produce a Return statement. The case for Call should change it into TailCall. The other cases should recursively process their subexpressions and statements, choosing the appropriate explicate functions for the various contexts.

Functions 131

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |

r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |

label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= %bytereg

cc ::= e | ne | l | le | g | ge

instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label

arg ::= label(%rip)

instr ::= callq *arg | leaq arg, %reg

block ::= instr
+

def ::= .globl label (label: block)
ú

x86
Def

callqú ::= def
ú

Figure 8.9
The concrete syntax of x86

Def

callqú (extends x86Global of figure 7.13).

arg ::= Constant(int) | Reg(reg) | Deref(reg,int) | ByteReg(reg)

| Global(label) | FunRef(label)

instr ::= IndirectCallq(arg, int) | Instr(�leaq�,[arg,Reg(reg)])

block ::= label: instr
ú

def ::= (label,{block, … })

x86
Def

callqú ::= X86ProgramDefs([def , …])

Figure 8.10
The abstract syntax of x86

Def

callqú (extends x86Global of figure 7.14).

8.8 Select Instructions and the x86
Def

callqú Language

The output of select instructions is a program in the x86
Def

callqú language; the definition
of its concrete syntax is shown in figure 8.9, and the definition of its abstract syntax
is shown in figure 8.10. We use the align directive on the labels of function definitions to make sure the bottom three bits are zero, which we put to use in chapter 10.
We discuss the new instructions as needed in this section.

An assignment of a function reference to a variable becomes a load-e�ective-
address instruction as follows, where lhs

Õ is the translation of lhs from atm in CFun

to arg in x86
Var,Def

callqú . The FunRef becomes a Global AST node, whose concrete syntax
is instruction-pointer-relative addressing.

lhs = FunRef(f n); ∆ leaq f (%rip), lhs
Õ

132 Chapter 8

Regarding function definitions, we need to remove the parameters and instead
perform parameter passing using the conventions discussed in section 8.2. That is,
the first six arguments are passed in registers, and any additional arguments are
pushed on the stack. We recommend turning the parameters into local variables
and generating instructions at the beginning of the function to move from the
argument-passing registers (section 8.2.1) or the stack to these local variables.

FunctionDef(f , [(x1, T1), …], B, _, Tr, _)

∆
FunctionDef(f , [], B

Õ
, _, int, _)

The basic blocks B
Õ are the same as B except that the start block is modified

to add the instructions for moving from the argument registers to the parameter
variables. So the start block of B shown on the left of the following is changed to
the code on the right:

start:

instr1

· · ·
instrn

∆

f _start:

movq %rdi, x1

movq %rsi, x2

· · ·
movq 16(%rbp), x7

movq 24(%rbp), x8

· · ·
instr1

· · ·
instrn

Recall that we use the label start for the initial block of a program, and in
section 2.5 we recommend labeling the conclusion of the program with conclusion,
so that Return(Arg) can be compiled to an assignment to rax followed by a jump
to conclusion. With the addition of function definitions, there is a start block and
conclusion for each function, but their labels need to be unique. We recommend
prepending the function’s name to start and conclusion, respectively, to obtain
unique labels.

By changing the parameters to local variables, we are giving the register allocator
control over which registers or stack locations to use for them. If you implement
the move-biasing challenge (section 4.7), the register allocator will try to assign
the parameter variables to the corresponding argument register, in which case the
patch_instructions pass will remove the movq instruction. This happens in the
example translation given in figure 8.12 in section 8.12, in the add function. Also,
note that the register allocator will perform liveness analysis on this sequence of
move instructions and build the interference graph. So, for example, x1 will be
marked as interfering with rsi, and that will prevent the mapping of x1 to rsi,
which is good because otherwise the first movq would overwrite the argument in
rsi that is needed for x2.

Next, consider the compilation of function calls. In the mirror image of the han-
dling of parameters in function definitions, the first six arguments are moved to
the argument-passing registers, and any subsequent arguments are pushed onto the

Functions 133

stack (in reverse order). To keep rsp properly 16-byte aligned at the call, we rec-
ommend pushing an extra pseudo-argument on the stack if the number of real stack
arguments is not divisible by 2. Note that in the general case the function is not
given as a label, but its address is produced by the argument arg

0
. So, we translate

the call into an indirect function call. The return value from the function is stored
in rax, so it needs to be moved into the lhs. If n is an even number greater than 6,
the translation looks like this:

lhs = Call(arg
0
, arg

1
arg

2
… arg

n
)

∆
movq arg

1
, %rdi

movq arg
2
, %rsi

.

.

.

movq arg
6
, %r9

pushq arg
n

.

.

.

pushq arg
7

callq *arg
0

addq $8(n – 6), %rsp

movq %rax, lhs

The IndirectCallq AST node includes an integer for the arity of the function,
that is, the number of parameters. That information is useful in the uncover_live

pass for determining which argument-passing registers are potentially read during
the call.

In the special case where arg
0

is a built-in function or a FunRef, we should use a
slightly more e�cient direct call in place of the indirect call.

For tail calls, the parameter passing is the same as non-tail calls: generate instructions to move the arguments into the argument-passing registers. After that we need to pop the frame from the procedure call stack. However, we do not yet know how big the frame is; that gets determined during register allocation. So, instead of generating those instructions here, we invent a new instruction that means “pop the frame and then do an indirect jump,” which we name TailJmp. The abstract syntax for this instruction includes an argument that specifies where to jump and an integer that represents the arity of the function being called.

8.9 Register Allocation

The addition of functions requires some changes to all three aspects of register
allocation, which we discuss in the following subsections.

8.9.1 Liveness Analysis
The IndirectCallq instruction should be treated like Callq regarding its written
locations W, in that they should include all the caller-saved registers. Recall that
the reason for that is to force variables that are live across a function call to be
assigned to callee-saved registers or to be spilled to the stack.

Regarding the set of read locations R, the arity fields of TailJmp and
IndirectCallq determine how many of the argument-passing registers should be
considered as read by those instructions. Also, the target field of TailJmp and
IndirectCallq should be included in the set of read locations R.

134 Chapter 8

8.9.2 Build Interference Graph
With the addition of function definitions, we compute a separate interference graph
for each function (not just one for the whole program).

Recall that in section 7.7 we discussed the need to spill tuple-typed variables
that are live during a call to collect, the garbage collector. With the addition
of functions to our language, we need to revisit this issue. Functions that perform
allocation contain calls to the collector. Thus, we should not only spill a tuple-typed
variable when it is live during a call to collect, but we should spill the variable if it
is live during a call to any user-defined function. Thus, in the build_interference

pass, we recommend adding interference edges between call-live tuple-typed vari-
ables and the callee-saved registers (in addition to creating edges between call-live
variables and the caller-saved registers).

8.9.3 Allocate Registers
The primary change to the allocate_registers pass is adding an auxiliary func-
tion for handling definitions (the def nonterminal shown in figure 8.10) with one case
for function definitions. The logic is the same as described in chapter 4 except that
now register allocation is performed many times, once for each function definition,
instead of just once for the whole program.

8.10 Patch Instructions

In patch_instructions, you should deal with the x86 idiosyncrasy that the desti-
nation argument of leaq must be a register. Additionally, you should ensure that the argument of TailJmp is rax, our reserved register—because we trample many other registers before the tail call, as explained in the next section.

8.11 Generate Prelude and Conclusion

Now that register allocation is complete, we can translate the TailJmp into a sequence of instructions. A naive translation of TailJmp would simply be jmp *arg. However, before the jump we need to pop the current frame to achieve e�cient tail calls. This sequence of instructions is the same as the code for the conclusion of a function, except that the retq is replaced with jmp *arg.
Regarding function definitions, we generate a prelude and conclusion for each one.

This code is similar to the prelude and conclusion generated for the main function
presented in chapter 7. To review, the prelude of every function should carry out
the following steps:

1. Push rbp to the stack and set rbp to current stack pointer.
2. Push to the stack all the callee-saved registers that were used for register

allocation.
3. Move the stack pointer rsp down to make room for the regular spills (aligned

to 16 bytes).
4. Move the root stack pointer r15 up by the size of the root-stack frame for this

function, which depends on the number of spilled tuple-typed variables.
5. Initialize to zero all new entries in the root-stack frame.
6. Jump to the start block.

The prelude of the main function has an additional task: call the initialize

function to set up the garbage collector, and then move the value of the global

Functions 135

LFun LFun LFunRef

Lmon

FunRefLAlloc

FunRef

CFun

x86
Var,Def

callqú x86
Var,Def

callqú x86
Def

callqú x86callqú

shrink reveal_functions

remove_complex_operandsexpose_allocation

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 8.11
Diagram of the passes for LFun, a language with functions.

rootstack_begin in r15. This initialization should happen before step 4, which
depends on r15.

The conclusion of every function should do the following:

1. Move the stack pointer back up past the regular spills.
2. Restore the callee-saved registers by popping them from the stack.
3. Move the root stack pointer back down by the size of the root-stack frame for

this function.
4. Restore rbp by popping it from the stack.
5. Return to the caller with the retq instruction.

The output of this pass is x86callqú, which di�ers from x86
Def

callqú in that there is no
longer an AST node for function definitions. Instead, a program is just a dictionary
of basic blocks, as in x86Global. So we have the following grammar rule:

x86callqú ::= X86Program({label: instr
ú
, … })

Figure 8.11 gives an overview of the passes for compiling LFun to x86.

Exercise 8.1 Expand your compiler to handle LFun as outlined in this chapter. Cre-
ate eight new programs that use functions including examples that pass functions
and return functions from other functions, recursive functions, functions that cre-
ate tuples, and functions that make tail calls. Test your compiler on these new
programs and all your previously created test programs.

136 Chapter 8

8.12 An Example Translation

Figure 8.12 shows an example translation of a simple function in LFun to x86. The
figure includes the results of explicate_control and select_instructions.

def add(x:int, y:int) -> int:

return x + y

print(add(40, 2))

»
def add(x : int, y : int) -> int:

add_start:

tmp.0 = (x + y)

return tmp.0

def main() -> int:

main_start:

tmp.1 = {add}(40, 2)

print(tmp.1)

return 0

∆

def add() -> int:

add_start:

movq %rdi, x

movq %rsi, y

movq x, tmp.0

addq y, tmp.0

movq tmp.0, %rax

jmp add_conclusion

def main() -> int:

main_start:

movq $40, %rdi

movq $2, %rsi

callq add

movq %rax, tmp.1

movq tmp.1, %rdi

callq print_int

movq $0, %rax

jmp main_conclusion

»

add:

pushq %rbp

movq %rsp, %rbp

subq $0, %rsp

jmp add_start

add_start:

movq %rdi, %rcx

movq %rsi, %rdx

addq %rdx, %rcx

movq %rcx, %rax

jmp add_conclusion

add_conclusion:

subq $0, %r15

addq $0, %rsp

popq %rbp

retq

.globl main

main:

pushq %rbp

movq %rsp, %rbp

subq $0, %rsp

movq $65536, %rdi

movq $16, %rsi

callq _initialize

movq _rootstack_begin(%rip), %r15

jmp main_start

main_start:

movq $40, %rdi

movq $2, %rsi

callq add

movq %rax, %rcx

movq %rcx, %rdi

callq print_int

movq $0, %rax

jmp main_conclusion

main_conclusion:

subq $0, %r15

addq $0, %rsp

popq %rbp

retq

Figure 8.12
Example compilation of a simple function to x86.

